Performance Optimisations for Rendering Portals in Virtual Reality

Milan van Zanten
University of Basel

milan.vanzanten@unibas.ch

November 1, 2022

1 Introduction

There are several uses for portals in computer graph-
ics including determining the visibility of parts of a
3D scene[5], dividing a scene up into separate areas,
rendering a mirror surface, or as traversable portals
that can be seen and moved through. These uses
can be broadly categorised as either an optimisation
technique or a rendering trick. The former two of the
mentioned applications are used to determine geom-
etry that can be ignored when rendering a scene and
speed up the process. Mirror surfaces and traversable
portals though are effects purposefully implemented
in an application to benefit the experience.

There are already many implementations of
traversable portals in media like video games or archi-
tectural visualisations[2]. In this paper we will focus
on an application of traversable portals concerning
the space limitations in a virtual reality (VR) expe-
rience.

One of the main challenges when implementing VR
applications is immersion, since errors in tracking and
latency are noticed particularly strong[l]. In an ef-
fort to maximise immersion, most of VR has moved
from seated experiences with movement limited to
three degrees of freedom (just rotation) to “room-
scale” tracking. Here, in addition to the rotation
of the VR headset, the user’s position is tracked ei-
ther via external devices with fixed positions or by
cameras that analyse the surroundings and use com-
puter vision algorithms to determine the position.
With the added positional tracking, the six degrees
of freedom allow the user to move around the room

Figure 1: Four rooms with portals (in red) can all be
accessed without leaving the smaller real space[4].

freely. Thus, the only limitation now is the available
space. To move around virtual worlds larger than
the available space, several different methods have
been developed[3]. Examples include head-directed
locomotion, point & teleport and more. Indisputably
though, the technique that preserves immersion the
most is actual walking inside the real space.

A recent method to circumvent the space limita-
tions of walking inside a real space is the concept of
impossible spaces. Overlapping rooms are connected
through portals into a single space many times larger
than the initial rooms themselves. If such an arrange-
ment is made while factoring in the real available
space, the whole virtual space can be accessed by
passing through the portals. An example layout can
be seen in Figure 1.

To allow for such impossible spaces to exist, the



aforementioned portals are necessary. When viewed,
they show what the user would be seeing through
the portal in the other room, and if a user crosses
the plane of a portal, they are transported to the
connecting one. In virtual reality, implementing such
a portal system poses some extra challenges.

Each portal requires rendering an additional view-
point. When rendering the portals in VR, where each
eye is rendered by its own camera, there are now two
additional viewpoints to render from. In the naive
case where each viewpoint is rendered the same, we
produce quadruple the amount of work compared to a
basic non-VR scene without portals. We will present
two optimisations that can reduce the rendering time
and analyse their impact. The first optimisation —
using the stencil buffer to only render what is seen
through the portal — is concerned with improving
the rendering time of portals in general. In contrast,
the second optimisation improves the overall perfor-
mance of rendering VR by not pushing the whole
scene to the GPU twice and rendering a texture for
each eye, but rather rendering both eyes onto a single
texture.

The way a VR scene is rendered also raises the
question of how to handle the teleportation of the
user. For example, consider the centre point between
the eyes that could be used to decide when the portal
plane has been crossed. If the user view the portal
from an angle, they could clip through the portal with
one eye when they enter it2. This could be solved by
transporting each eye separately whenever it passes
through the portal, but that idea conflicts with one
of the performance optimisations we will discuss in
the first part.

References

[1] Michael Abrash. Why virtual reality is hard (and
where it might be going). Game Developers Con-
ference 2013, 2013.

[2] Daniel G Aliaga and Anselmo A Lastra. Ar-
chitectural walkthroughs using portal textures.
In Proceedings. Visualization 97 (Cat. No.
97CB36155), pages 355-362. IEEE, 1997.

Figure 2: What should the right-eye camera render
if it is inside the portal wall (in grey), but the centre
of the head (in red) has not crossed the portal plane?
If nothing is done, the blue part of the user’s field of
view would not render the next room, but whatever
is inside or behind the portal wall.

[3] Costas Boletsis. The new era of virtual real-
ity locomotion: A systematic literature review of
techniques and a proposed typology. Multimodal
Technologies and Interaction, 1(4), 2017.

[4] Daniel Lochner. Vr natural walking in impossi-
ble spaces. Motion, Interaction and Games (MIG
'21), 2021.

[5] Nick Lowe and Amitava Datta. A new technique
for rendering complex portals. IEFE Transac-
tions on Visualization and Computer Graphics,
11(1):81-90, 2005.



