Rendering Portals in Virtual Reality

Milan van Zanten
University of Basel

milan.vanzanten@unibas.ch

December 21, 2022

Abstract

Portals have many applications in the field of computer
graphics. Recently, they have found use as a way of
artificially increasing the available space in a virtual
reality (VR) environment. In this paper, we will cover
a technique for making the transition through a portal
unnoticeable to the user. Additionally, we will mea-
sure the performance impact of rendering portals in a
test scene and provide some insight into possible opti-

misations.
1 Introduction

There are several uses for portals in computer graph-
ics including determining the visibility of parts of a
3D scene[1], dividing a scene up into separate areas,
rendering a mirror surface, or as traversable portals
that can be seen and moved through. These uses
can be broadly categorised as either an optimisation
technique or a rendering trick. The former two of the
mentioned applications are used to determine geom-
etry that can be ignored when rendering a scene and
speed up the process. Mirror surfaces and traversable
portals though are effects purposefully implemented
in an application to benefit the experience.

There are already many implementations of
traversable portals in media like video games or archi-
tectural visualisations[2]. In this paper, we will focus
on an application of traversable portals concerning
the space limitations in a VR experience.

One of the main challenges when implementing VR

applications is immersion, because errors in tracking
and latency are noticed particularly strong[3]. In an
effort to maximise immersion, most of VR has moved
from seated experiences with movement limited to
three degrees of freedom (just rotation) to “room-
scale” tracking. In addition to the rotation of the
VR headset, the user’s position is tracked either via
external devices with fixed positions or by cameras
that analyse the surroundings and use computer vi-
sion algorithms to determine the position. With the
added positional tracking, the six degrees of freedom
allow the user to move around the room freely. The
only limitation now is the available space.

To move around virtual worlds larger than the
available space, several different methods have been
developed[4]. Examples include head-directed loco-
motion and point & teleport. Indisputably though,
the technique that preserves immersion the most is
actual walking inside the real space.

1.1 Impossible Spaces

A recent method to circumvent the space limitations
of walking in a real space is the concept of impossible
spaces. Overlapping rooms are connected through
portals into a single space many times larger than
the initial rooms themselves. If such an arrangement
is made while factoring in the real available space,
the whole virtual space can be accessed by passing
through the portals. An example layout can be seen
in Figure 1.

|]

L —

Figure 1: Four rooms with portals (in red) can all be accessed
without leaving the smaller real space[5].

To allow for such impossible spaces to exist, the
aforementioned portals are necessary. When viewed,
they show what the user would be seeing through
the portal in the other room, and if a user crosses
the plane of a portal, they are transported to the
connecting one.

In virtual reality, implementing such a portal sys-
tem poses some extra challenges.

The goal of this paper is to explore how classical
portals from monoscopic! applications can be imple-
mented in stereoscopic VR. We will focus on two main
objectives:

1. How can portals be implemented in a way that
the user can look and pass through them without
noticing?

1An application that only shows one viewpoint is called
monoscopic, whereas a VR application that renders one view-
point per eye is called stereoscopic. A detailed explanation of
the terminology can be found in Tagti1 and Avci[6].

2. What performance pitfalls should be considered
when rendering portals in VR and what optimi-
sations can be applied to alleviate them?

2 Unobtrusive Transitions

Portals in computer graphics are generally just flat
quads? onto which the view from within another por-
tal is drawn. In monoscopic applications, a single
camera moving from space A through a portal into
space B will see a flat image of what is on the other
side of it as long as it is still in space A. As soon as
it crosses the portal plane, it is being transported to
space B and will render that space directly.

Figure 2: What should the right-eye camera render if it is
inside the portal wall (in grey), but the centre of the head (in
red) has not crossed the portal plane? If nothing is done, the
blue part of the user’s field of view would not render the next
room, but whatever is inside or behind the portal wall.

The way a VR scene is rendered, though, raises
the question of how to handle the teleportation of the
two separate cameras rendering each eye without the
user noticing. For example, consider the centre point
between the eyes that could be used to decide when
the portal plane has been crossed. If the user views
the portal from an angle they could clip through the
portal with one eye when they enter it before being
transported, as shown in Figure 2.

2A flat, rectangular object that can be used to show an
image in a 3D environment.

At best, this results in a short flicker when the user
passes through a portal. If the user stops inside the
portal, however, it results in a completely wrong view
on one eye.

One way to solve this problem could be to trans-
port each eye separately whenever it passes through
the portal, but that idea conflicts with one of the
performance optimisations we will discuss in the next
section.

If we want to keep the optimisations we intro-
duce, a different method of making sure the tran-
sition through a portal is unnoticeable by the user,
no matter how slowly they move or where they look.
This method takes advantage of back-face culling?.

Instead of the portal being a plane, we will have it
be a box. Every surface of the box is shaded with the
view from the other room. If one eye clips inside the
portal box, it will still see the other sides of the box
that show the next room, instead of what was behind
the portal originally.

Space A
visible

space B_projec’ed

Space A
visible

Figure 3: The sides of the portal box are only visible from
the side with a solid red line. Therefore, the right eye can see
space B on the inner wall and simultaneously look out of the
portal box back into space A.

3A triangle in computer graphics is generally considered to
have a front side and a backside, determined by whether the
points of the triangle appear in clockwise or counter-clockwise
order from where they are viewed. Jeon et al.[7] show how
back-face culling reduces the amount of drawn triangles by
only drawing the triangles that are facing the camera.

The final problem is that if this eye wants to look
back out from the portal box into the old room, it
should not see the portal plane. This is where we
use back-face culling to make sure the front side of
the portal box is only visible from the outside. A
visualisation of what each eye sees in this scenario
can be found in Figure 3.

3 Performance Impact

To better understand the impact rendering multiple
portals in VR has, we created a test application with
three pairs of connected portals. With this test scene,
we can measure the performance impact of rendering
one, two or three pairs of portals and compare it to
the baseline of no portals. An illustration of this test
scene can be found in Figures 4 through 7.

Figure 4: The test scene with no portals enabled.

Figure 5: The connected blue and green portals are enabled.

Figure 6: The test scene with four portals enabled.

Figure 7: The test scene with all six portals enabled.

We measured the rendering performance of this
test scene four times, each time with a different num-
ber of active portal pairs. The tests were all per-
formed on an Nvidia GeForce GTX 1070 with the
only changes between the tests being the number of
active portals. The results of our tests can be found
in the following table:

Portals 0 2 4 (]
Frame Rate [{ps] 44.7 | 279 | 174 | 10.3
Frame Time [ms] 22 37 | 58 98

Main Thread [ms] 9 23 43 r
Render Thread [ms] | 18 24 28 40
GPU Frame [ms] 03 | 14 44 78

The measured values were the average frame rate
of the application in frames per second, the average

time taken for the whole frame and the individual
times in the main and render threads on the CPU
and the GPU render thread.

Since our focus is on the performance impact of
rendering the portals, we focus on the frame rate and
the GPU frame time. Those two measurements are
visualised in Figure 8.

50 fps 100 ms

40 fps 80 ms

30 fps 60 ms

20 fps 40 ms

10 fps 20 ms
0 fps 0 ms

oF AT WS
—Frame Rate [fps] —GPU Frame [ms]

Figure 8

We note that rendering only a single pair of portals
already incurs a large cost, as seen in the decrease of
the frame rate by approximately 37% from 44.7 fps
down to 27.9 fps. The almost 50 fold increase in
GPU frame time suggests that this performance loss
happens mostly on the GPU. The baseline test with-
out any portals does not use any textures. Ji et al.[§]
mention the performance cost of pushing texture data
to the GPU, which explains the increased frame time
when using textures to render the portals.

Drawing the scene without portals can be done in
two render passes, one for each eye. Every added
portal requires drawing the scene again from each
eye, thus a single portal pair increases the number of
passes from two to six. With three pairs of portals,
the scene requires a total of 14 render passes. The
graph in Figure 8 shows this growth of the frame
time.

Figure 9: This figure shows how the left eye of our test scene is
being rendered. It begins by rendering the view from the blue
portal (top left), followed by the geometry of the blue platform
(top right). Similarly, the rest of the portals are rendered first
(bottom left) and the platform they are on second (bottom
right).

4 Optimisation Considerations

Rendering each portal portal requires an additional
viewpoint. In VR, where each eye is rendered by
its own camera, there are now two additional view-
points to render from per portal. In the naive case,
where each viewpoint is rendered the same, we pro-
duce quadruple the amount of work compared to a
monoscopic scene without portals.

Rendering the whole view from a portal can lead to
a lot of wasted performance. For example, the further
away a portal is, the fewer pixels on the screen it
occupies. Rendering the view from the portal in full
resolution can be wasteful if the portal is far from
the camera or completely redundant if the user is not
looking at the portal.

Furthermore, the portal itself might be blocked by
other geometry in front of it. Figure 9 shows how the
two portals rendered in the bottom left image are
subsequently being blocked by the green bowl and
the yellow cubes in the final image.

We will present two optimisations that can reduce
the rendering time and analyse their impact.

4.1 Stencil Buffer

The first optimisation we consider uses the so-called
stencil buffer to only render what is seen through
the portal. This can improve the rendering time of
portals in general.

The stencil buffer on graphics cards is used to mask
out an area on the screen that will not be drawn to.
If the portals are first rendered with a shader that
simply marks the stencil buffer and nothing else, in a
second pass, the virtual cameras behind those portals
can then fill the remaining area with the view from
the other side of the portals. This way, no redundant
pixels are drawn and the amount of pixels that need
to be drawn stays practically constant no matter how
many portals are visible on the screen. An example
demonstrating how a scene with two portals is split
up by a stencil buffer can be found in Figure 10.

Figure 10: The user is standing in a green room looking at
two portals to a yellow and a magenta room. The amount of
rendering can in this case be divided by three if the pairs of
cameras only render a masked out area of their room instead
of the whole picture.

As mentioned by Vlachos[9][10], the stencil buffer
is also used to cull the pixels not visible in the VR
headset. This is apparent in Figure 9, where a
rounded off part at the bottom of the blue platform
would never be visible to the user and is left out.

4.2 Single-Pass Instanced Rendering

In contrast to the stencil buffer, the second optimi-
sation improves the overall performance of render-
ing VR by not pushing the whole scene to the GPU
twice and rendering a texture for each eye, but rather
rendering both eyes onto a single texture while only
keeping a single copy of each rendered object in mem-
ory.

The naive way of rendering a stereoscopic image is
to simply render it two times, once from the perspec-
tive of each eye. This is called multi-pass rendering
and is illustrated in Figure 11. The advantage of this
technique is its simplicity in implementing it. Shader
code from monoscopic applications can be used in
multi-pass rendering without any changes since we
are essentially just rendering two images per frame.

4
< i
Left Eye (Pass 1) e ,/

Right Eye (Pass 2)

Figure 11: When rendering in multiple passes, all work is dou-
bled. This illustration shows how basically the three objects
are treated as though they were separate objects[11].

This method comes with a large performance
downside. In the worst case, the amount of rendering
work is multiplied by the number of portals. Thus,
the rendering overhead caused by multi-pass render-
ing is in this case not acceptable.

The second method described in Figure 12 —
single-pass instanced rendering — improves upon this
by rendering both the left and right eyes onto the
same texture. Additionally, the geometry only ex-
ists on the GPU once, as well as any shadow maps
and other view-independent data. The objects are
rendered twice as different instances from the two
perspectives of the eyes.

Figure 12: When rendering in an instanced single pass, the
whole geometry of the scene is processed only once, which sig-
nificantly reduces the amount of work[11].

Single-pass instanced rendering should greatly im-
prove the performance, but as mentioned in Section 2
rendering both eyes in one pass eliminates the possi-
bility of transporting them through the portal sepa-
rately from each other.

5 Conclusion

We have shown how to implement portals in VR that
allow for an unobtrusive transition through them.
This can help immersion in an impossible space of
artificially increased size.

The tests with our implementation of portals shows
that it is very expensive to render each pair of portals.
Currently, a scene should be limited to having as few
portals visible as possible. In an experience where the
user progresses through a series of rooms in a linear
fashion, the amount of portals could be limited by
disabling portals of previously visited rooms as soon
as the next one is entered.

The mentioned performance optimisations might
help making a VR experience that has many portals
visible at the same time possible. Using the stencil
buffer to render only the necessary parts of each por-
tal could in theory allow for an unlimited amount of
portals shown at the same time. We showed that the

amount of pixels rendered in this case stays practi-
cally constant.

References

[1]

N. Lowe and A. Datta, “A new technique for ren-
dering complex portals,” IEEE Transactions on
Visualization and Computer Graphics, vol. 11,
no. 1, pp. 81-90, 2005.

D. G. Aliaga and A. A. Lastra, “Architectural
walkthroughs using portal textures,” in Proceed-
ings. Visualization '97 (Cat. No. 97CB36155).
IEEE, 1997, pp. 355-362.

M. Abrash, “Why virtual reality is hard
(and where it might be going),” Game
Developers Conference 2013, 2013. [Online].
Available: https://www.valvesoftware.com/en/
publications

C. Boletsis, “The new era of virtual re-
ality locomotion: A systematic literature
review of techniques and a proposed typol-
ogy,” Multimodal Technologies and Interaction,
vol. 1, mno. 4, 2017. [Online]. Available:
https://www.mdpi.com/2414-4088/1/4/24

D. Lochner, “Vr natural walking in impossible
spaces,” Motion, Interaction and Games (MIG
'21), 2021.

M. B. Tagt1 and Ummiihan Avel, “Examination
of using monoscopic three-dimensional (m3d)
and stereoscopic three-dimensional (s3d) anima-
tion on students,” FEducation and Information
Technologies, vol. 25, pp. 2765-2790, 2020.

D.-B. Jeon, S.-Y. Kim, K.-Y. Lee, and J.-C.
Kwak, “A design of a 3d graphics rasterizer with
a culling and clipping,” in TENCON 2007 - 2007
IEEE Region 10 Conference, 2007, pp. 1-4.

J. Ji, E. Wu, S. Li, and X. Liu, “Dynamic lod on
gpu,” in Proceedings of the Computer Graphics
International 2005, ser. CGI ’05. USA: IEEE
Computer Society, 2005, p. 108-114.

[9]

[10]

[11]

A. Vlachos, “Advanced vr rendering,” Game
Developers Conference 2015, 2015. [Ounline].
Available: https://www.valvesoftware.com/en/
publications

“Advanced vr rendering performance,”
Game Developers Conference 2016, 2016. [On-
line]. Available: https://www.valvesoftware.
com/en/publications

NVIDIA, “Vrworks — single pass
https://developer.nvidia.com/vrworks/
graphics/singlepassstereo, [accessed 1.11.2022].

stereo,”

