presentation
86
csv/aggregate_average_duration.csv
Normal file
@@ -0,0 +1,86 @@
|
||||
2.6,1
|
||||
2.7,2
|
||||
2.9,1
|
||||
3.1,3
|
||||
3.2,2
|
||||
3.3,2
|
||||
3.4,3
|
||||
3.5,1
|
||||
3.6,2
|
||||
3.7,2
|
||||
3.8,1
|
||||
3.9,2
|
||||
4,4
|
||||
4.1,5
|
||||
4.3,8
|
||||
4.4,3
|
||||
4.5,3
|
||||
4.6,5
|
||||
4.7,5
|
||||
4.8,5
|
||||
4.9,5
|
||||
5,4
|
||||
5.1,4
|
||||
5.2,6
|
||||
5.3,3
|
||||
5.4,3
|
||||
5.5,6
|
||||
5.6,7
|
||||
5.7,2
|
||||
5.8,7
|
||||
5.9,6
|
||||
6,3
|
||||
6.1,5
|
||||
6.2,4
|
||||
6.3,2
|
||||
6.4,2
|
||||
6.5,5
|
||||
6.6,5
|
||||
6.7,3
|
||||
6.8,1
|
||||
6.9,2
|
||||
7,1
|
||||
7.1,3
|
||||
7.2,1
|
||||
7.3,3
|
||||
7.4,5
|
||||
7.5,1
|
||||
7.6,7
|
||||
7.7,4
|
||||
7.8,7
|
||||
7.9,1
|
||||
8,1
|
||||
8.2,2
|
||||
8.3,3
|
||||
8.4,2
|
||||
8.5,1
|
||||
8.6,1
|
||||
8.7,2
|
||||
8.8,1
|
||||
8.9,1
|
||||
9,2
|
||||
9.1,2
|
||||
9.2,2
|
||||
9.3,2
|
||||
9.4,2
|
||||
9.6,1
|
||||
10.2,1
|
||||
10.6,1
|
||||
10.7,3
|
||||
10.8,2
|
||||
11,2
|
||||
11.1,1
|
||||
11.3,2
|
||||
11.8,1
|
||||
12,1
|
||||
12.6,1
|
||||
12.7,1
|
||||
13.4,1
|
||||
13.5,2
|
||||
15.5,1
|
||||
16.7,1
|
||||
18.2,1
|
||||
18.3,1
|
||||
28.9,1
|
||||
68.9,1
|
||||
79.5,1
|
||||
|
86
csv/aggregate_average_remaining_duration.csv
Normal file
@@ -0,0 +1,86 @@
|
||||
16.7,1
|
||||
19.4,1
|
||||
19.5,1
|
||||
20.5,1
|
||||
20.7,1
|
||||
21,1
|
||||
21.3,2
|
||||
21.9,1
|
||||
22.1,1
|
||||
22.5,1
|
||||
22.6,1
|
||||
22.7,1
|
||||
23.2,1
|
||||
23.4,1
|
||||
23.7,1
|
||||
23.9,3
|
||||
24,1
|
||||
24.1,2
|
||||
24.2,1
|
||||
24.3,4
|
||||
24.4,3
|
||||
24.5,1
|
||||
24.7,2
|
||||
24.8,2
|
||||
24.9,1
|
||||
25.1,1
|
||||
25.2,1
|
||||
25.3,2
|
||||
25.4,2
|
||||
25.5,1
|
||||
25.6,2
|
||||
25.7,1
|
||||
25.8,3
|
||||
25.9,4
|
||||
26,2
|
||||
26.1,4
|
||||
26.2,1
|
||||
26.3,3
|
||||
26.4,3
|
||||
26.5,3
|
||||
26.6,4
|
||||
26.7,10
|
||||
26.8,4
|
||||
26.9,1
|
||||
27,3
|
||||
27.1,6
|
||||
27.2,7
|
||||
27.3,4
|
||||
27.4,2
|
||||
27.5,3
|
||||
27.6,4
|
||||
27.7,8
|
||||
27.8,3
|
||||
27.9,9
|
||||
28,4
|
||||
28.1,5
|
||||
28.2,2
|
||||
28.3,4
|
||||
28.4,7
|
||||
28.5,1
|
||||
28.6,10
|
||||
28.7,5
|
||||
28.8,2
|
||||
28.9,6
|
||||
29,7
|
||||
29.1,5
|
||||
29.2,3
|
||||
29.3,4
|
||||
29.4,1
|
||||
29.5,1
|
||||
29.6,2
|
||||
29.8,3
|
||||
30,1
|
||||
30.1,4
|
||||
30.2,1
|
||||
30.3,3
|
||||
30.4,3
|
||||
30.5,1
|
||||
30.6,1
|
||||
30.7,1
|
||||
30.8,1
|
||||
30.9,1
|
||||
31.1,2
|
||||
31.5,1
|
||||
32.1,1
|
||||
35.7,1
|
||||
|
BIN
images/alexa.jpg
Normal file
|
After Width: | Height: | Size: 684 KiB |
BIN
images/google-assistant.jpg
Normal file
|
After Width: | Height: | Size: 683 KiB |
BIN
images/plots/plot-Hey Siri. Any missed calls.png
Normal file
|
After Width: | Height: | Size: 198 KiB |
BIN
images/plots/plot-Hey Siri. Call John Doe.png
Normal file
|
After Width: | Height: | Size: 665 KiB |
BIN
images/plots/plot-Hey Siri. Call Mary Poppins.png
Normal file
|
After Width: | Height: | Size: 669 KiB |
BIN
images/plots/plot-Hey Siri. How far is New York from Boston.png
Normal file
|
After Width: | Height: | Size: 241 KiB |
BIN
images/plots/plot-Hey Siri. How old is Ian McKellen.png
Normal file
|
After Width: | Height: | Size: 162 KiB |
BIN
images/plots/plot-Hey Siri. Is there a God.png
Normal file
|
After Width: | Height: | Size: 125 KiB |
BIN
images/plots/plot-Hey Siri. Read Calendar.png
Normal file
|
After Width: | Height: | Size: 260 KiB |
BIN
images/plots/plot-Hey Siri. Remind me to wash the car.png
Normal file
|
After Width: | Height: | Size: 257 KiB |
BIN
images/plots/plot-Hey Siri. Roll a die.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
|
After Width: | Height: | Size: 242 KiB |
BIN
images/plots/plot-Hey Siri. What day was 90 days ago.png
Normal file
|
After Width: | Height: | Size: 173 KiB |
BIN
images/plots/plot-Hey Siri. What is the factorial of 6.png
Normal file
|
After Width: | Height: | Size: 161 KiB |
|
After Width: | Height: | Size: 232 KiB |
BIN
images/plots/plot-Hey Siri. Whats 2330 dollars in euros.png
Normal file
|
After Width: | Height: | Size: 280 KiB |
BIN
images/plots/plot-Hey Siri. Whats the temperature outside.png
Normal file
|
After Width: | Height: | Size: 176 KiB |
BIN
images/siri.jpg
Normal file
|
After Width: | Height: | Size: 822 KiB |
1
main.pdfpc
Normal file
@@ -0,0 +1 @@
|
||||
{"pdfpcFormat":2,"disableMarkdown":false,"pages":[{"idx":0,"label":1,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":1,"label":2,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":2,"label":3,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":3,"label":4,"overlay":0,"forcedOverlay":false,"hidden":false,"note":"Three main VAs"},{"idx":4,"label":4,"overlay":1,"forcedOverlay":true,"hidden":false,"note":"Three main VAs"},{"idx":5,"label":5,"overlay":0,"forcedOverlay":false,"hidden":false,"note":"Why do we want to look at smart speakers?"},{"idx":6,"label":5,"overlay":1,"forcedOverlay":true,"hidden":false,"note":"Why do we want to look at smart speakers?"},{"idx":7,"label":5,"overlay":2,"forcedOverlay":true,"hidden":false,"note":"Why do we want to look at smart speakers?"},{"idx":8,"label":6,"overlay":0,"forcedOverlay":false,"hidden":false,"note":"skill squatting; specific to alexa, skills basically apps"},{"idx":9,"label":6,"overlay":1,"forcedOverlay":true,"hidden":false,"note":"skill squatting; specific to alexa, skills basically apps"},{"idx":10,"label":7,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":11,"label":8,"overlay":0,"forcedOverlay":false,"hidden":false,"note":"Just after the release of SSL 3.0"},{"idx":12,"label":8,"overlay":1,"forcedOverlay":true,"hidden":false,"note":"Just after the release of SSL 3.0"},{"idx":13,"label":8,"overlay":2,"forcedOverlay":true,"hidden":false,"note":"Just after the release of SSL 3.0"},{"idx":14,"label":9,"overlay":0,"forcedOverlay":false,"hidden":false,"note":"Relevant developments in my opinion"},{"idx":15,"label":10,"overlay":0,"forcedOverlay":false,"hidden":false,"note":"2. to filter traffic"},{"idx":16,"label":11,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":17,"label":12,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":18,"label":13,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":19,"label":14,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":20,"label":15,"overlay":0,"forcedOverlay":false,"hidden":false,"note":"Why? Let's look at Website Traffic Fingerprinting"},{"idx":21,"label":15,"overlay":1,"forcedOverlay":true,"hidden":false,"note":"Why? Let's look at Website Traffic Fingerprinting"},{"idx":22,"label":15,"overlay":2,"forcedOverlay":true,"hidden":false,"note":"Why? Let's look at Website Traffic Fingerprinting"},{"idx":23,"label":15,"overlay":3,"forcedOverlay":true,"hidden":false,"note":"Why? Let's look at Website Traffic Fingerprinting"},{"idx":24,"label":15,"overlay":4,"forcedOverlay":true,"hidden":false,"note":"Why? Let's look at Website Traffic Fingerprinting"},{"idx":25,"label":15,"overlay":5,"forcedOverlay":true,"hidden":false,"note":"Why? Let's look at Website Traffic Fingerprinting"},{"idx":26,"label":16,"overlay":0,"forcedOverlay":false,"hidden":false,"note":"Found in one of the newer papers"},{"idx":27,"label":17,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":28,"label":18,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":29,"label":19,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":30,"label":20,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":31,"label":21,"overlay":0,"forcedOverlay":false,"hidden":false,"note":"Some outliers like \"tell me a story\" at >1min"},{"idx":32,"label":22,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":33,"label":23,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":34,"label":24,"overlay":0,"forcedOverlay":false,"hidden":false},{"idx":35,"label":25,"overlay":0,"forcedOverlay":false,"hidden":false,"note":"Since I've trained the model on my laptop, I used a smaller network."},{"idx":36,"label":26,"overlay":0,"forcedOverlay":false,"hidden":false}]}
|
||||
549
main.typ
Normal file
@@ -0,0 +1,549 @@
|
||||
#import "@preview/polylux:0.3.1": *
|
||||
#import "university-custom.typ": *
|
||||
#import "@preview/fletcher:0.4.1" as fletcher: node, edge
|
||||
#import "@preview/cetz:0.2.0"
|
||||
|
||||
#let mint = rgb("a5d7d2")
|
||||
#let mint-hell = rgb("d2ebe9")
|
||||
#let rot = rgb("d20537")
|
||||
#let anthrazit = rgb("2d373c")
|
||||
#let anthrazit-hell = rgb("46505a")
|
||||
|
||||
#show quote: it => {
|
||||
if it.block {
|
||||
it
|
||||
} else {
|
||||
emph(it)
|
||||
}
|
||||
}
|
||||
|
||||
// diagrams
|
||||
#let edge_(..args) = edge(..args, marks: (none, "|>")) // we can't use set rules for user defined functions yet, so we overwrite it
|
||||
#let group_node(colour, ..args) = node(
|
||||
..args,
|
||||
stroke: colour,
|
||||
fill: colour.lighten(80%),
|
||||
)
|
||||
#let group_edge(colour, description, ..args) = edge(
|
||||
..args,
|
||||
text(colour)[#description],
|
||||
"..",
|
||||
stroke: colour,
|
||||
label-side: left,
|
||||
)
|
||||
#let enclose_nodes(nodes, colour, clearance: (8pt, 8pt, 8pt, 8pt)) = {
|
||||
let (center, size) = fletcher.bounding-rect(nodes.map(node => node.real-pos))
|
||||
center.at(0) = center.at(0) - (clearance.at(3) - clearance.at(1))
|
||||
center.at(1) = center.at(1) - (clearance.at(2) - clearance.at(0))
|
||||
|
||||
cetz.draw.content(
|
||||
center,
|
||||
rect(
|
||||
width: size.at(0) + clearance.at(1) + clearance.at(3),
|
||||
height: size.at(1) + clearance.at(2) + clearance.at(0),
|
||||
radius: 16pt,
|
||||
stroke: colour,
|
||||
fill: colour.lighten(85%),
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
// functions
|
||||
#let focus-title-slide(title) = {
|
||||
focus-slide(background-color: white)[
|
||||
#align(center, text(fill: anthrazit, size: 0.7em, weight: "bold", title))
|
||||
]
|
||||
}
|
||||
|
||||
// #pdfpc.config(
|
||||
// duration-minutes: 30,
|
||||
// // start-time: "10:15",
|
||||
// // end-time: "10:45",
|
||||
// // note-font-size: 24,
|
||||
// )
|
||||
|
||||
#show: university-theme.with(
|
||||
short-title: [A Testbed for Voice Assistant Traffic Fingerprinting],
|
||||
short-author: [Milan van Zanten],
|
||||
color-a: anthrazit,
|
||||
color-b: mint,
|
||||
)
|
||||
|
||||
#title-slide(
|
||||
title: [A Testbed for Voice Assistant \ Traffic Fingerprinting],
|
||||
subtitle: [Master Thesis Presentation],
|
||||
authors: [Milan van Zanten],
|
||||
date: [21.03.2024],
|
||||
institution-name: [University of Basel],
|
||||
logo: pad(1em, image("unibas-logo.svg"))
|
||||
)
|
||||
|
||||
#slide(title: [Outline])[
|
||||
+ Voice Assistants
|
||||
+ Traffic Fingerprinting
|
||||
+ Testbed
|
||||
+ Results
|
||||
+ Demo
|
||||
|
||||
Ask questions any time!
|
||||
]
|
||||
|
||||
#focus-title-slide[
|
||||
A Testbed for #text(fill: rot)[Voice Assistant] \ Traffic Fingerprinting
|
||||
]
|
||||
|
||||
#slide(title: [Devices], new-section: [Voice Assistants])[
|
||||
#pdfpc.speaker-note("Three main VAs")
|
||||
|
||||
Specifically, #emph[Smart Speakers]
|
||||
#only(1)[
|
||||
#side-by-side[
|
||||
#align(center)[
|
||||
#image(width: 50%, "images/alexa.jpg")
|
||||
|
||||
Echo Dot
|
||||
|
||||
#emph[Amazon Alexa]
|
||||
]
|
||||
][
|
||||
#align(center)[
|
||||
#image(width: 50%, "images/siri.jpg")
|
||||
|
||||
HomePod Mini
|
||||
|
||||
#emph[Siri]
|
||||
]
|
||||
][
|
||||
#align(center)[
|
||||
#image(width: 50%, "images/google-assistant.jpg")
|
||||
|
||||
Google Home Mini
|
||||
|
||||
#emph[Google Assistant]
|
||||
]
|
||||
]
|
||||
]
|
||||
#only(2)[
|
||||
#side-by-side[
|
||||
#align(center)[
|
||||
#image(width: 40%, "images/alexa.jpg")
|
||||
|
||||
#text(size: .6em)[
|
||||
Echo Dot
|
||||
|
||||
#emph[Amazon Alexa]
|
||||
]
|
||||
]
|
||||
][
|
||||
#align(center)[
|
||||
#image(width: 80%, "images/siri.jpg")
|
||||
|
||||
HomePod Mini
|
||||
|
||||
#emph[Siri]
|
||||
]
|
||||
][
|
||||
#align(center)[
|
||||
#image(width: 40%, "images/google-assistant.jpg")
|
||||
|
||||
#text(size: .6em)[
|
||||
Google Home Mini
|
||||
|
||||
#emph[Google Assistant]
|
||||
]
|
||||
]
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
#slide(title: [Smart Speaker Privacy / Security])[
|
||||
#counter(footnote).update(0) // reset footnote counter
|
||||
|
||||
#pdfpc.speaker-note("Why do we want to look at smart speakers?")
|
||||
#pdfpc.speaker-note("Alexa; guest voice wrongly recognised 65%")
|
||||
|
||||
#alternatives(repeat-last: true)[
|
||||
none #h(1em) `(╯°□°)╯︵ ┻━┻`
|
||||
][
|
||||
There are concerns...
|
||||
]
|
||||
#pause
|
||||
|
||||
- Usually located where sensitive conversations take place
|
||||
- Necessarily always listening
|
||||
- Misactivations
|
||||
- Used to control smart home devices (e.g. door locks)
|
||||
- No authentication\*
|
||||
|
||||
#uncover(3)[About 40% of households in the U.S. own a smart speaker.]
|
||||
|
||||
#v(1em)
|
||||
#text(0.6em)[\* Voice recognition is still insecure.]
|
||||
]
|
||||
|
||||
#slide(title: [Attacks on Smart Speakers])[
|
||||
#pdfpc.speaker-note("skill squatting; specific to alexa, skills basically apps")
|
||||
#pdfpc.speaker-note("Boil an egg is an existing skill")
|
||||
|
||||
Active:
|
||||
- Malicious activations
|
||||
- Similar pronounciations, "skill squatting"
|
||||
- (e.g. "Boil an egg" $->$ "Boyle an egg")#footnote[D. Kumar et al., #quote[Skill Squatting Attacks on Amazon Alexa], August 2018, Available: #link("https://www.usenix.org/conference/usenixsecurity18/presentation/kumar")]
|
||||
|
||||
Passive:
|
||||
- #alternatives[Traffic Fingerprinting][#text(fill: rot)[Traffic Fingerprinting]]
|
||||
]
|
||||
|
||||
#focus-title-slide[
|
||||
A Testbed for Voice Assistant \ #text(fill: rot)[Traffic Fingerprinting]
|
||||
]
|
||||
|
||||
#slide(title: [], new-section: [Traffic Fingerprinting])[
|
||||
#pdfpc.speaker-note("Just after the release of SSL 3.0")
|
||||
#pdfpc.speaker-note("David Wagner and Bruce Schneier")
|
||||
#pdfpc.speaker-note("Probably one of the first mentions")
|
||||
|
||||
#v(2em)
|
||||
|
||||
#quote(attribution: [Wagner and Schneier#footnote[D. Wagner and B. Schneier, #quote[Analysis of the SSL 3.0 Protocol], November 1996, Available: #link("https://dl.acm.org/doi/10.5555/1267167.1267171")]], block: true, quotes: true)[[SSL] traffic analysis aims to recover confidential information about protection sessions by examining unencrypted packet fields and #alternatives(repeat-last: true)[unprotected packet attributes][#text(fill: rot)[unprotected packet attributes]]. For example [...] the volume of network traffic flow]
|
||||
|
||||
#uncover(3)[... packet direction, timing, and more]
|
||||
]
|
||||
|
||||
#slide(title: [Timeline])[
|
||||
#counter(footnote).update(0) // reset footnote counter
|
||||
|
||||
#pdfpc.speaker-note("Relevant developments in my opinion")
|
||||
#pdfpc.speaker-note("Abe and Goto; Denoising Autoencoder on Tor traffic")
|
||||
#pdfpc.speaker-note("Mao et al.; time between packets")
|
||||
#pdfpc.speaker-note("Ahmed, Sabir and Das; so far all attacks assumed known traffic window, allowed them to do end-to-end")
|
||||
|
||||
/ 1996: Wagner and Schneier#footnote[Timeline references can be found at the end of the presentation.], #text(fill: rot)[coined SSL traffic analysis]
|
||||
/ 1998: Cheng and Avnur, #text(fill: rot)[website traffic analysis]
|
||||
|
||||
#h(4em) #text(fill: rot)[website fingerprinting (WF)...]
|
||||
|
||||
/ 2016: Abe and Goto, #text(fill: rot)[deep learning WF]
|
||||
/ 2019: Kennedy et al., #text(fill: rot)[apply WF techniques to voice assistants (VA)]
|
||||
/ 2020: Wang et al., #text(fill: rot)[deep learning VA fingerprinting]
|
||||
/ 2022: Mao et al., #text(fill: rot)[temporal features]
|
||||
/ 2023: Ahmed, Sabir and Das, #text(fill: rot)[invocation detection]
|
||||
]
|
||||
|
||||
#slide(title: [Threat Model])[
|
||||
#pdfpc.speaker-note("2. to filter traffic")
|
||||
|
||||
#align(center, text(size: 0.7em,
|
||||
fletcher.diagram(
|
||||
node-stroke: 1pt,
|
||||
edge-stroke: 1pt,
|
||||
node-corner-radius: 8pt,
|
||||
edge-corner-radius: 8pt,
|
||||
node-fill: rgb("eee"),
|
||||
spacing: 3em,
|
||||
node((-2, 0), `VA Server`),
|
||||
edge(`WAN`),
|
||||
node((0, 0), `Gateway`),
|
||||
edge("rr", `LAN`),
|
||||
edge("r", "d", "r"),
|
||||
node((2, 0), `Smart Speaker`),
|
||||
node((2, 1), `Other Devices`),
|
||||
group_node(rot, (1, -1), `Attacker`),
|
||||
edge((1, -0.4), text(fill: rot)[`Intercept`], stroke: rot),
|
||||
)
|
||||
))
|
||||
|
||||
+ The attacker can intercept traffic from smart speaker
|
||||
+ The attacker knows the smart speaker address
|
||||
+ The attacker knows the type of smart speaker used
|
||||
+ The attacker knows the beginning and end of an interaction
|
||||
]
|
||||
|
||||
#slide(title: [Closed-World])[
|
||||
#v(2em)
|
||||
|
||||
- Fixed list of monitored voice commands
|
||||
- Traffic is considered to come from one of the monitored commands
|
||||
- Multiclass classification
|
||||
|
||||
Predicts which command was used.
|
||||
]
|
||||
|
||||
#slide(title: [Open-World])[
|
||||
#v(2em)
|
||||
|
||||
- Traffic can also come from new, unmonitored commands
|
||||
- Binary-classification
|
||||
|
||||
Predicts whether traffic is from monitored or unmonitored command.
|
||||
]
|
||||
|
||||
#slide(title: [Combining Both Models])[
|
||||
#v(2em)
|
||||
|
||||
#align(center, text(size: 0.7em,
|
||||
fletcher.diagram(
|
||||
node-stroke: 1pt,
|
||||
edge-stroke: 1pt,
|
||||
node-corner-radius: 8pt,
|
||||
edge-corner-radius: 8pt,
|
||||
node-fill: rgb("eee"),
|
||||
spacing: 3em,
|
||||
node((0, 0), `traffic`),
|
||||
edge_(),
|
||||
node((1, 0), `open-world classification`),
|
||||
edge_("d", `unmonitored`),
|
||||
edge_(`monitored`),
|
||||
node((3, 0), `closed-world classification`),
|
||||
edge_(),
|
||||
node((3, 1), `prediction`),
|
||||
node((1, 1), `unknown`),
|
||||
)
|
||||
))
|
||||
]
|
||||
|
||||
#focus-title-slide[
|
||||
A #text(fill: rot)[Testbed] for Voice Assistant \ Traffic Fingerprinting
|
||||
]
|
||||
|
||||
#slide(title: [Comparison], new-section: [Testbed])[
|
||||
#pdfpc.speaker-note("Why? Let's look at Website Traffic Fingerprinting")
|
||||
|
||||
#side-by-side[
|
||||
Website Fingerprinting:
|
||||
- Requires a large amount of data
|
||||
- Data collection usually via program making requests
|
||||
- Only dependent on network environment
|
||||
- Fast
|
||||
][
|
||||
Voice Command Fingerprinting: #pause
|
||||
- Requires a large amount of data #pause
|
||||
- Interaction by speaking \ ~ #pause
|
||||
- Hampered by environment noise \ ~ #pause
|
||||
- Slow and inefficient #pause
|
||||
#text(fill: rot)[$->$ Sophisticated testbed]
|
||||
]
|
||||
]
|
||||
|
||||
#slide(title: [])[
|
||||
#counter(footnote).update(0) // reset footnote counter
|
||||
|
||||
#pdfpc.speaker-note("Found in one of the newer papers")
|
||||
|
||||
#v(4em)
|
||||
|
||||
#quote(attribution: [Mao et al.#footnote[Jianghan Mao et al., #quote[A novel model for voice command fingerprinting using deep learning], March 2022, Available: #link("https://doi.org/10.1016/j.jisa.2021.103085")]], block: true, quotes: true)[The content of voice commands may vary from date to date; therefore, more efficient data collection tools need to be developed.]
|
||||
]
|
||||
|
||||
#slide(title: [Requirements])[
|
||||
- Sound isolation
|
||||
- Isolated box
|
||||
- Separate speaker/microphone
|
||||
- Efficiency
|
||||
- Every second saved per interaction means hours saved when collecting dozens of thousands interactions
|
||||
- Dynamic interaction length by listening for silence
|
||||
- Robustness
|
||||
- Autonomously reset VA if error occurs
|
||||
- Monitoring system
|
||||
]
|
||||
|
||||
#slide(title: [System])[
|
||||
#text(size: 0.8em)[
|
||||
/ `varys`: The main executable combining all modules into the final system.
|
||||
/ `varys-analysis`: Analysis of data collected by varys.
|
||||
/ `varys-audio`: Recording audio and the TTS and STT systems.
|
||||
/ `varys-database`: Abstraction of the database system where interactions are stored.
|
||||
/ `varys-network`: Collection of network traffic, writing and parsing of `.pcap` files.
|
||||
]
|
||||
|
||||
#v(1em)
|
||||
|
||||
#align(center, text(size: 0.7em)[
|
||||
#fletcher.diagram(
|
||||
node-stroke: 1pt,
|
||||
edge-stroke: 1pt,
|
||||
node-corner-radius: 4pt,
|
||||
edge-corner-radius: 4pt,
|
||||
spacing: 1.5em,
|
||||
node((0, 0), `varys`, fill: rgb("eee")),
|
||||
edge_("r"),
|
||||
edge_("dd", "l", "d"),
|
||||
edge_("ddd"),
|
||||
edge_("dd", "r", "d"),
|
||||
group_node(anthrazit, (1, 0), "varys-analysis"),
|
||||
edge_("d", (0.12, 1), (0.12, 2.625)),
|
||||
edge_("d", (1.2, 1), (1.2, 2.625)),
|
||||
group_node(anthrazit, (-1, 3), "varys-audio"),
|
||||
group_node(anthrazit, (0, 3), "varys-network"),
|
||||
group_node(anthrazit, (1, 3), "varys-database"),
|
||||
)
|
||||
])
|
||||
]
|
||||
|
||||
#focus-title-slide[
|
||||
Results
|
||||
]
|
||||
|
||||
#slide(title: [Datasets], new-section: [Results])[
|
||||
#v(2em)
|
||||
|
||||
\~800h, \~70'000 interactions
|
||||
|
||||
~
|
||||
|
||||
/ ` large`: 227 queries, 140 interactions each
|
||||
/ ` small`: 13 queries, 2400 interactions each
|
||||
/ `binary`: #quote[Call John Doe] and #quote[Call Mary Poppins], 1500 interactions each
|
||||
]
|
||||
|
||||
#slide(title: [Efficiency])[
|
||||
#pdfpc.speaker-note("Some outliers like \"tell me a story\" at >1min")
|
||||
|
||||
#align(center, text(size: 0.8em)[
|
||||
#cetz.canvas({
|
||||
import cetz.draw: *
|
||||
import cetz.plot
|
||||
|
||||
let data = csv("csv/aggregate_average_duration.csv").map(item => {
|
||||
(float(item.at(0)), int(item.at(1)))
|
||||
})
|
||||
let data_remaining = csv("csv/aggregate_average_remaining_duration.csv").map(item => {
|
||||
(float(item.at(0)), int(item.at(1)))
|
||||
})
|
||||
|
||||
set-style(legend: (padding: 5pt, item: (spacing: 10pt)))
|
||||
plot.plot(
|
||||
size: (24, 8),
|
||||
axis-style: "scientific-auto",
|
||||
legend: "legend.inner-north",
|
||||
x-label: "average duration [s]",
|
||||
x-tick-step: 2,
|
||||
x-min: 0,
|
||||
x-max: 36,
|
||||
y-label: "queries",
|
||||
y-tick-step: 1,
|
||||
y-min: 0,
|
||||
{
|
||||
for item in data {
|
||||
plot.add(
|
||||
((item.at(0), 0), (..item)),
|
||||
style: (stroke: 2pt + mint),
|
||||
)
|
||||
}
|
||||
plot.add(
|
||||
((100, 0), (100, 1)),
|
||||
style: (stroke: 8pt + mint),
|
||||
label: "Avg. Speaking Duration",
|
||||
)
|
||||
|
||||
for item in data_remaining {
|
||||
plot.add(
|
||||
((item.at(0), 0), (..item)),
|
||||
style: (stroke: 2pt + rot),
|
||||
)
|
||||
}
|
||||
plot.add(
|
||||
((100, 0), (100, 1)),
|
||||
style: (stroke: 8pt + rot),
|
||||
label: "Avg. Remaining Duration",
|
||||
)
|
||||
})
|
||||
})
|
||||
])
|
||||
]
|
||||
|
||||
#slide(title: [Traffic Trace Examples])[
|
||||
#side-by-side[
|
||||
#image(width: 100%, height: 89%, "images/plots/plot-Hey Siri. Any missed calls.png")
|
||||
#v(10pt, weak: true)
|
||||
#quote[Any missed calls?]
|
||||
][
|
||||
#image(width: 100%, height: 89%, "images/plots/plot-Hey Siri. What day was 90 days ago.png")
|
||||
#v(10pt, weak: true)
|
||||
#quote[What day was 90 days ago?]
|
||||
]
|
||||
]
|
||||
|
||||
#slide(title: [Fingerprinting Model])[
|
||||
#counter(footnote).update(0) // reset footnote counter
|
||||
|
||||
#text(size: 0.96em)[
|
||||
Feature extraction #text(size: 0.8em)[(packet size $s in [0, 1500]$ and direction $d in {0, 1}$)]:
|
||||
$$$
|
||||
(s, d) -> (-1)^(d) dot s/1500 #h(0.8em)
|
||||
$$$
|
||||
|
||||
CNN adapted from Wang et al.#footnote[Chenggang Wang et al., #quote[Fingerprinting Encrypted Voice Traffic on Smart Speakers with Deep Learning], May 2020, Available: #link("https://doi.org/10.1145/3395351.3399357")]:
|
||||
]
|
||||
|
||||
#text(size: 0.65em)[
|
||||
#fletcher.diagram(
|
||||
node-stroke: 1pt,
|
||||
node-fill: rgb("eee"),
|
||||
edge-stroke: 1pt,
|
||||
node-corner-radius: 4pt,
|
||||
edge-corner-radius: 4pt,
|
||||
spacing: 1.5em,
|
||||
group_node(rot, (0, 0), align(center)[Input]),
|
||||
edge_(),
|
||||
node((1, 0), align(center)[Conv. Layer \ `[tanh]`]),
|
||||
edge_(),
|
||||
node((2, 0), align(center)[Dropout \ $0.1$]),
|
||||
edge_(),
|
||||
node((3, 0), align(center)[Global Average \ Pooling]),
|
||||
edge_(),
|
||||
node((4, 0), align(center)[Dense Layer \ `[elu]`]),
|
||||
edge_(),
|
||||
node((5, 0), align(center)[Dense Layer \ `[softmax]`]),
|
||||
edge_(),
|
||||
group_node(rot, (6, 0), align(center)[Output]),
|
||||
render: (grid, nodes, edges, options) => {
|
||||
let cnn_1 = (nodes.at(1), nodes.at(2), nodes.at(3))
|
||||
cetz.canvas({
|
||||
enclose_nodes(cnn_1, rgb(0, 0, 0, 50%), clearance: (34pt, 64pt, 34pt, 61pt))
|
||||
fletcher.draw-diagram(grid, nodes, edges, options)
|
||||
})
|
||||
}
|
||||
)
|
||||
]
|
||||
]
|
||||
|
||||
#slide(title: [Classification])[
|
||||
#v(2em)
|
||||
|
||||
Accuracy on test sets:
|
||||
|
||||
/ ` large`: \~40.40% (random choice \~0.44%)
|
||||
/ ` small`: \~86.19% (random choice \~7.69%)
|
||||
/ `binary`: \~71.19% (random choice 50%)
|
||||
]
|
||||
|
||||
#slide(title: [Demo], new-section: [])[
|
||||
#pdfpc.speaker-note("Since I've trained the model on my laptop, I used a smaller network.")
|
||||
|
||||
#text(size: 0.66em)[
|
||||
```sh
|
||||
./target/release/varys -i ap1 analyse demo data/ml/test_5_13\ queries_0.86 f4:34:f0:89:2d:75
|
||||
```
|
||||
]
|
||||
|
||||
#quote[Hey Siri, any missed calls?]
|
||||
|
||||
#quote[Hey Siri, remind me to wash the car.]
|
||||
|
||||
#v(1em)
|
||||
#text(size: 0.66em)[It is unlikely this will work...]
|
||||
]
|
||||
|
||||
#slide(header: pad(left: 1em, top: 0.5em, heading[Timeline References]))[
|
||||
<references>
|
||||
#text(size: 0.7em)[
|
||||
- D. Wagner and B. Schneier, #quote[Analysis of the SSL 3.0 Protocol], November 1996, Available: #link("https://dl.acm.org/doi/10.5555/1267167.1267171")
|
||||
- H. Cheng and R. Avnur, #quote[Traffic Analysis of SSL Encrypted Web Browsing], 1998
|
||||
- K. Abe and S. Goto, #quote[Fingerprinting Attack on Tor Anonymity using Deep Learning], August 2016, Available: #link("https://core.ac.uk/display/229876143")
|
||||
- S. Kennedy et al., #quote[I Can Hear Your Alexa: Voice Command Fingerprinting on Smart Home Speakers], June 2019, Available: #link("https://doi.org/10.1109/CNS.2019.8802686")
|
||||
- Chenggang Wang et al., #quote[Fingerprinting Encrypted Voice Traffic on Smart Speakers with Deep Learning], May 2020, Available: #link("https://doi.org/10.1145/3395351.3399357")
|
||||
- Jianghan Mao et al., #quote[A novel model for voice command fingerprinting using deep learning], March 2022, Available: #link("https://doi.org/10.1016/j.jisa.2021.103085")
|
||||
- D. Ahmed, A. Sabir, and A. Das, #quote[Spying through Your Voice Assistants: Realistic Voice Command Fingerprinting], August 2023, Available: #link("https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-dilawer")
|
||||
]
|
||||
]
|
||||
20
unibas-logo.svg
Normal file
|
After Width: | Height: | Size: 20 KiB |
249
university-custom.typ
Normal file
@@ -0,0 +1,249 @@
|
||||
#import "@preview/polylux:0.3.1": logic, utils
|
||||
|
||||
// University theme
|
||||
//
|
||||
// Originally contributed by Pol Dellaiera - https://github.com/drupol
|
||||
//
|
||||
// Please feel free to improve this theme
|
||||
// by submitting a PR in https://github.com/andreasKroepelin/typst-slides
|
||||
//
|
||||
// Adapted by https://github.com/m-vz
|
||||
|
||||
#let uni-colors = state("uni-colors", (:))
|
||||
#let uni-short-title = state("uni-short-title", none)
|
||||
#let uni-short-author = state("uni-short-author", none)
|
||||
#let uni-short-date = state("uni-short-date", none)
|
||||
#let uni-progress-bar = state("uni-progress-bar", true)
|
||||
|
||||
#let university-theme(
|
||||
aspect-ratio: "16-9",
|
||||
short-title: none,
|
||||
short-author: none,
|
||||
short-date: none,
|
||||
color-a: rgb("#0C6291"),
|
||||
color-b: rgb("#A63446"),
|
||||
color-c: rgb("#FBFEF9"),
|
||||
progress-bar: true,
|
||||
body
|
||||
) = {
|
||||
set page(
|
||||
paper: "presentation-" + aspect-ratio,
|
||||
margin: 0em,
|
||||
header: none,
|
||||
footer: none,
|
||||
)
|
||||
set text(size: 25pt)
|
||||
show footnote.entry: set text(size: .6em)
|
||||
|
||||
uni-progress-bar.update(progress-bar)
|
||||
uni-colors.update((a: color-a, b: color-b, c: color-c))
|
||||
uni-short-title.update(short-title)
|
||||
uni-short-author.update(short-author)
|
||||
uni-short-date.update(short-date)
|
||||
|
||||
body
|
||||
}
|
||||
|
||||
#let title-slide(
|
||||
title: [],
|
||||
subtitle: none,
|
||||
authors: (),
|
||||
institution-name: "University",
|
||||
date: none,
|
||||
logo: none,
|
||||
) = {
|
||||
let authors = if type(authors) == "array" { authors } else { (authors,) }
|
||||
|
||||
let content = locate( loc => {
|
||||
let colors = uni-colors.at(loc)
|
||||
|
||||
if logo != none {
|
||||
align(right, logo)
|
||||
}
|
||||
|
||||
align(center + horizon, {
|
||||
block(
|
||||
inset: 0em,
|
||||
breakable: false,
|
||||
{
|
||||
text(size: 1.5em, fill: colors.a, strong(title))
|
||||
if subtitle != none {
|
||||
parbreak()
|
||||
text(size: 1em, fill: colors.a, subtitle)
|
||||
}
|
||||
}
|
||||
)
|
||||
set text(size: .8em)
|
||||
grid(
|
||||
columns: (1fr,) * calc.min(authors.len(), 3),
|
||||
column-gutter: 1em,
|
||||
row-gutter: 1em,
|
||||
..authors.map(author => text(fill: black, author))
|
||||
)
|
||||
v(1em)
|
||||
if institution-name != none {
|
||||
parbreak()
|
||||
text(size: .9em, institution-name)
|
||||
}
|
||||
if date != none {
|
||||
parbreak()
|
||||
text(size: .8em, date)
|
||||
}
|
||||
})
|
||||
})
|
||||
|
||||
logic.polylux-slide(content)
|
||||
}
|
||||
|
||||
|
||||
#let slide(
|
||||
title: none,
|
||||
header: none,
|
||||
footer: none,
|
||||
new-section: none,
|
||||
body
|
||||
) = {
|
||||
|
||||
let body = pad(x: 2em, y: 1em, body)
|
||||
|
||||
let progress-barline = locate( loc => {
|
||||
if uni-progress-bar.at(loc) {
|
||||
let cell = block.with( width: 100%, height: 100%, above: 0pt, below: 0pt, breakable: false )
|
||||
let colors = uni-colors.at(loc)
|
||||
|
||||
utils.polylux-progress( ratio => {
|
||||
grid(
|
||||
rows: 2pt, columns: (ratio * 100%, 1fr),
|
||||
cell(fill: colors.a),
|
||||
cell(fill: colors.b)
|
||||
)
|
||||
})
|
||||
} else { [] }
|
||||
})
|
||||
|
||||
let header-text = {
|
||||
if header != none {
|
||||
header
|
||||
} else if title != none {
|
||||
if new-section != none {
|
||||
utils.register-section(new-section)
|
||||
}
|
||||
locate( loc => {
|
||||
let colors = uni-colors.at(loc)
|
||||
block(fill: colors.c, inset: (x: 1em, y: 0.5em), grid(
|
||||
columns: (60%, 40%),
|
||||
align(top + left, heading(level: 2, text(fill: colors.a, title))),
|
||||
align(top + right, text(weight: "bold", fill: colors.a.lighten(65%), utils.current-section))
|
||||
))
|
||||
})
|
||||
} else { [] }
|
||||
}
|
||||
|
||||
let header = {
|
||||
set align(top)
|
||||
grid(rows: (auto, auto), row-gutter: 5mm, progress-barline, header-text)
|
||||
}
|
||||
|
||||
let footer = {
|
||||
set text(size: 10pt)
|
||||
set align(center + bottom)
|
||||
let cell(fill: none, it) = rect(
|
||||
width: 100%, height: 100%, inset: 1mm, outset: 0mm, fill: fill, stroke: none,
|
||||
align(horizon, text(fill: white, it))
|
||||
)
|
||||
if footer != none {
|
||||
footer
|
||||
} else {
|
||||
locate( loc => {
|
||||
let colors = uni-colors.at(loc)
|
||||
|
||||
show: block.with(width: 100%, height: auto, fill: colors.b)
|
||||
grid(
|
||||
columns: (25%, 1fr, 15%, 10%),
|
||||
rows: (1.5em, auto),
|
||||
cell(fill: colors.a, uni-short-author.display()),
|
||||
cell(text(fill: black, uni-short-title.display())),
|
||||
cell(text(fill: black, uni-short-date.display())),
|
||||
cell(text(fill: black, logic.logical-slide.display() + [~/~] + utils.last-slide-number))
|
||||
)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
set page(
|
||||
margin: ( top: 3em, bottom: 1em, x: 0em ),
|
||||
header: header,
|
||||
footer: footer,
|
||||
footer-descent: 0em,
|
||||
header-ascent: .6em,
|
||||
)
|
||||
|
||||
logic.polylux-slide(body)
|
||||
}
|
||||
|
||||
#let focus-slide(background-color: none, background-img: none, body) = {
|
||||
let background-color = if background-img == none and background-color == none {
|
||||
rgb("#0C6291")
|
||||
} else {
|
||||
background-color
|
||||
}
|
||||
|
||||
set page(fill: background-color, margin: 1em) if background-color != none
|
||||
set page(
|
||||
background: {
|
||||
set image(fit: "stretch", width: 100%, height: 100%)
|
||||
background-img
|
||||
},
|
||||
margin: 1em,
|
||||
) if background-img != none
|
||||
|
||||
set text(fill: white, size: 2em)
|
||||
|
||||
logic.polylux-slide(align(horizon, body))
|
||||
}
|
||||
|
||||
#let matrix-slide(columns: none, rows: none, ..bodies) = {
|
||||
let bodies = bodies.pos()
|
||||
|
||||
let columns = if type(columns) == "integer" {
|
||||
(1fr,) * columns
|
||||
} else if columns == none {
|
||||
(1fr,) * bodies.len()
|
||||
} else {
|
||||
columns
|
||||
}
|
||||
let num-cols = columns.len()
|
||||
|
||||
let rows = if type(rows) == "integer" {
|
||||
(1fr,) * rows
|
||||
} else if rows == none {
|
||||
let quotient = calc.quo(bodies.len(), num-cols)
|
||||
let correction = if calc.rem(bodies.len(), num-cols) == 0 { 0 } else { 1 }
|
||||
(1fr,) * (quotient + correction)
|
||||
} else {
|
||||
rows
|
||||
}
|
||||
let num-rows = rows.len()
|
||||
|
||||
if num-rows * num-cols < bodies.len() {
|
||||
panic("number of rows (" + str(num-rows) + ") * number of columns (" + str(num-cols) + ") must at least be number of content arguments (" + str(bodies.len()) + ")")
|
||||
}
|
||||
|
||||
let cart-idx(i) = (calc.quo(i, num-cols), calc.rem(i, num-cols))
|
||||
let color-body(idx-body) = {
|
||||
let (idx, body) = idx-body
|
||||
let (row, col) = cart-idx(idx)
|
||||
let color = if calc.even(row + col) { white } else { silver }
|
||||
set align(center + horizon)
|
||||
rect(inset: .5em, width: 100%, height: 100%, fill: color, body)
|
||||
}
|
||||
|
||||
let content = grid(
|
||||
columns: columns, rows: rows,
|
||||
gutter: 0pt,
|
||||
..bodies.enumerate().map(color-body)
|
||||
)
|
||||
|
||||
logic.polylux-slide(content)
|
||||
}
|
||||