presentation
This commit is contained in:
549
main.typ
Normal file
549
main.typ
Normal file
@@ -0,0 +1,549 @@
|
||||
#import "@preview/polylux:0.3.1": *
|
||||
#import "university-custom.typ": *
|
||||
#import "@preview/fletcher:0.4.1" as fletcher: node, edge
|
||||
#import "@preview/cetz:0.2.0"
|
||||
|
||||
#let mint = rgb("a5d7d2")
|
||||
#let mint-hell = rgb("d2ebe9")
|
||||
#let rot = rgb("d20537")
|
||||
#let anthrazit = rgb("2d373c")
|
||||
#let anthrazit-hell = rgb("46505a")
|
||||
|
||||
#show quote: it => {
|
||||
if it.block {
|
||||
it
|
||||
} else {
|
||||
emph(it)
|
||||
}
|
||||
}
|
||||
|
||||
// diagrams
|
||||
#let edge_(..args) = edge(..args, marks: (none, "|>")) // we can't use set rules for user defined functions yet, so we overwrite it
|
||||
#let group_node(colour, ..args) = node(
|
||||
..args,
|
||||
stroke: colour,
|
||||
fill: colour.lighten(80%),
|
||||
)
|
||||
#let group_edge(colour, description, ..args) = edge(
|
||||
..args,
|
||||
text(colour)[#description],
|
||||
"..",
|
||||
stroke: colour,
|
||||
label-side: left,
|
||||
)
|
||||
#let enclose_nodes(nodes, colour, clearance: (8pt, 8pt, 8pt, 8pt)) = {
|
||||
let (center, size) = fletcher.bounding-rect(nodes.map(node => node.real-pos))
|
||||
center.at(0) = center.at(0) - (clearance.at(3) - clearance.at(1))
|
||||
center.at(1) = center.at(1) - (clearance.at(2) - clearance.at(0))
|
||||
|
||||
cetz.draw.content(
|
||||
center,
|
||||
rect(
|
||||
width: size.at(0) + clearance.at(1) + clearance.at(3),
|
||||
height: size.at(1) + clearance.at(2) + clearance.at(0),
|
||||
radius: 16pt,
|
||||
stroke: colour,
|
||||
fill: colour.lighten(85%),
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
// functions
|
||||
#let focus-title-slide(title) = {
|
||||
focus-slide(background-color: white)[
|
||||
#align(center, text(fill: anthrazit, size: 0.7em, weight: "bold", title))
|
||||
]
|
||||
}
|
||||
|
||||
// #pdfpc.config(
|
||||
// duration-minutes: 30,
|
||||
// // start-time: "10:15",
|
||||
// // end-time: "10:45",
|
||||
// // note-font-size: 24,
|
||||
// )
|
||||
|
||||
#show: university-theme.with(
|
||||
short-title: [A Testbed for Voice Assistant Traffic Fingerprinting],
|
||||
short-author: [Milan van Zanten],
|
||||
color-a: anthrazit,
|
||||
color-b: mint,
|
||||
)
|
||||
|
||||
#title-slide(
|
||||
title: [A Testbed for Voice Assistant \ Traffic Fingerprinting],
|
||||
subtitle: [Master Thesis Presentation],
|
||||
authors: [Milan van Zanten],
|
||||
date: [21.03.2024],
|
||||
institution-name: [University of Basel],
|
||||
logo: pad(1em, image("unibas-logo.svg"))
|
||||
)
|
||||
|
||||
#slide(title: [Outline])[
|
||||
+ Voice Assistants
|
||||
+ Traffic Fingerprinting
|
||||
+ Testbed
|
||||
+ Results
|
||||
+ Demo
|
||||
|
||||
Ask questions any time!
|
||||
]
|
||||
|
||||
#focus-title-slide[
|
||||
A Testbed for #text(fill: rot)[Voice Assistant] \ Traffic Fingerprinting
|
||||
]
|
||||
|
||||
#slide(title: [Devices], new-section: [Voice Assistants])[
|
||||
#pdfpc.speaker-note("Three main VAs")
|
||||
|
||||
Specifically, #emph[Smart Speakers]
|
||||
#only(1)[
|
||||
#side-by-side[
|
||||
#align(center)[
|
||||
#image(width: 50%, "images/alexa.jpg")
|
||||
|
||||
Echo Dot
|
||||
|
||||
#emph[Amazon Alexa]
|
||||
]
|
||||
][
|
||||
#align(center)[
|
||||
#image(width: 50%, "images/siri.jpg")
|
||||
|
||||
HomePod Mini
|
||||
|
||||
#emph[Siri]
|
||||
]
|
||||
][
|
||||
#align(center)[
|
||||
#image(width: 50%, "images/google-assistant.jpg")
|
||||
|
||||
Google Home Mini
|
||||
|
||||
#emph[Google Assistant]
|
||||
]
|
||||
]
|
||||
]
|
||||
#only(2)[
|
||||
#side-by-side[
|
||||
#align(center)[
|
||||
#image(width: 40%, "images/alexa.jpg")
|
||||
|
||||
#text(size: .6em)[
|
||||
Echo Dot
|
||||
|
||||
#emph[Amazon Alexa]
|
||||
]
|
||||
]
|
||||
][
|
||||
#align(center)[
|
||||
#image(width: 80%, "images/siri.jpg")
|
||||
|
||||
HomePod Mini
|
||||
|
||||
#emph[Siri]
|
||||
]
|
||||
][
|
||||
#align(center)[
|
||||
#image(width: 40%, "images/google-assistant.jpg")
|
||||
|
||||
#text(size: .6em)[
|
||||
Google Home Mini
|
||||
|
||||
#emph[Google Assistant]
|
||||
]
|
||||
]
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
#slide(title: [Smart Speaker Privacy / Security])[
|
||||
#counter(footnote).update(0) // reset footnote counter
|
||||
|
||||
#pdfpc.speaker-note("Why do we want to look at smart speakers?")
|
||||
#pdfpc.speaker-note("Alexa; guest voice wrongly recognised 65%")
|
||||
|
||||
#alternatives(repeat-last: true)[
|
||||
none #h(1em) `(╯°□°)╯︵ ┻━┻`
|
||||
][
|
||||
There are concerns...
|
||||
]
|
||||
#pause
|
||||
|
||||
- Usually located where sensitive conversations take place
|
||||
- Necessarily always listening
|
||||
- Misactivations
|
||||
- Used to control smart home devices (e.g. door locks)
|
||||
- No authentication\*
|
||||
|
||||
#uncover(3)[About 40% of households in the U.S. own a smart speaker.]
|
||||
|
||||
#v(1em)
|
||||
#text(0.6em)[\* Voice recognition is still insecure.]
|
||||
]
|
||||
|
||||
#slide(title: [Attacks on Smart Speakers])[
|
||||
#pdfpc.speaker-note("skill squatting; specific to alexa, skills basically apps")
|
||||
#pdfpc.speaker-note("Boil an egg is an existing skill")
|
||||
|
||||
Active:
|
||||
- Malicious activations
|
||||
- Similar pronounciations, "skill squatting"
|
||||
- (e.g. "Boil an egg" $->$ "Boyle an egg")#footnote[D. Kumar et al., #quote[Skill Squatting Attacks on Amazon Alexa], August 2018, Available: #link("https://www.usenix.org/conference/usenixsecurity18/presentation/kumar")]
|
||||
|
||||
Passive:
|
||||
- #alternatives[Traffic Fingerprinting][#text(fill: rot)[Traffic Fingerprinting]]
|
||||
]
|
||||
|
||||
#focus-title-slide[
|
||||
A Testbed for Voice Assistant \ #text(fill: rot)[Traffic Fingerprinting]
|
||||
]
|
||||
|
||||
#slide(title: [], new-section: [Traffic Fingerprinting])[
|
||||
#pdfpc.speaker-note("Just after the release of SSL 3.0")
|
||||
#pdfpc.speaker-note("David Wagner and Bruce Schneier")
|
||||
#pdfpc.speaker-note("Probably one of the first mentions")
|
||||
|
||||
#v(2em)
|
||||
|
||||
#quote(attribution: [Wagner and Schneier#footnote[D. Wagner and B. Schneier, #quote[Analysis of the SSL 3.0 Protocol], November 1996, Available: #link("https://dl.acm.org/doi/10.5555/1267167.1267171")]], block: true, quotes: true)[[SSL] traffic analysis aims to recover confidential information about protection sessions by examining unencrypted packet fields and #alternatives(repeat-last: true)[unprotected packet attributes][#text(fill: rot)[unprotected packet attributes]]. For example [...] the volume of network traffic flow]
|
||||
|
||||
#uncover(3)[... packet direction, timing, and more]
|
||||
]
|
||||
|
||||
#slide(title: [Timeline])[
|
||||
#counter(footnote).update(0) // reset footnote counter
|
||||
|
||||
#pdfpc.speaker-note("Relevant developments in my opinion")
|
||||
#pdfpc.speaker-note("Abe and Goto; Denoising Autoencoder on Tor traffic")
|
||||
#pdfpc.speaker-note("Mao et al.; time between packets")
|
||||
#pdfpc.speaker-note("Ahmed, Sabir and Das; so far all attacks assumed known traffic window, allowed them to do end-to-end")
|
||||
|
||||
/ 1996: Wagner and Schneier#footnote[Timeline references can be found at the end of the presentation.], #text(fill: rot)[coined SSL traffic analysis]
|
||||
/ 1998: Cheng and Avnur, #text(fill: rot)[website traffic analysis]
|
||||
|
||||
#h(4em) #text(fill: rot)[website fingerprinting (WF)...]
|
||||
|
||||
/ 2016: Abe and Goto, #text(fill: rot)[deep learning WF]
|
||||
/ 2019: Kennedy et al., #text(fill: rot)[apply WF techniques to voice assistants (VA)]
|
||||
/ 2020: Wang et al., #text(fill: rot)[deep learning VA fingerprinting]
|
||||
/ 2022: Mao et al., #text(fill: rot)[temporal features]
|
||||
/ 2023: Ahmed, Sabir and Das, #text(fill: rot)[invocation detection]
|
||||
]
|
||||
|
||||
#slide(title: [Threat Model])[
|
||||
#pdfpc.speaker-note("2. to filter traffic")
|
||||
|
||||
#align(center, text(size: 0.7em,
|
||||
fletcher.diagram(
|
||||
node-stroke: 1pt,
|
||||
edge-stroke: 1pt,
|
||||
node-corner-radius: 8pt,
|
||||
edge-corner-radius: 8pt,
|
||||
node-fill: rgb("eee"),
|
||||
spacing: 3em,
|
||||
node((-2, 0), `VA Server`),
|
||||
edge(`WAN`),
|
||||
node((0, 0), `Gateway`),
|
||||
edge("rr", `LAN`),
|
||||
edge("r", "d", "r"),
|
||||
node((2, 0), `Smart Speaker`),
|
||||
node((2, 1), `Other Devices`),
|
||||
group_node(rot, (1, -1), `Attacker`),
|
||||
edge((1, -0.4), text(fill: rot)[`Intercept`], stroke: rot),
|
||||
)
|
||||
))
|
||||
|
||||
+ The attacker can intercept traffic from smart speaker
|
||||
+ The attacker knows the smart speaker address
|
||||
+ The attacker knows the type of smart speaker used
|
||||
+ The attacker knows the beginning and end of an interaction
|
||||
]
|
||||
|
||||
#slide(title: [Closed-World])[
|
||||
#v(2em)
|
||||
|
||||
- Fixed list of monitored voice commands
|
||||
- Traffic is considered to come from one of the monitored commands
|
||||
- Multiclass classification
|
||||
|
||||
Predicts which command was used.
|
||||
]
|
||||
|
||||
#slide(title: [Open-World])[
|
||||
#v(2em)
|
||||
|
||||
- Traffic can also come from new, unmonitored commands
|
||||
- Binary-classification
|
||||
|
||||
Predicts whether traffic is from monitored or unmonitored command.
|
||||
]
|
||||
|
||||
#slide(title: [Combining Both Models])[
|
||||
#v(2em)
|
||||
|
||||
#align(center, text(size: 0.7em,
|
||||
fletcher.diagram(
|
||||
node-stroke: 1pt,
|
||||
edge-stroke: 1pt,
|
||||
node-corner-radius: 8pt,
|
||||
edge-corner-radius: 8pt,
|
||||
node-fill: rgb("eee"),
|
||||
spacing: 3em,
|
||||
node((0, 0), `traffic`),
|
||||
edge_(),
|
||||
node((1, 0), `open-world classification`),
|
||||
edge_("d", `unmonitored`),
|
||||
edge_(`monitored`),
|
||||
node((3, 0), `closed-world classification`),
|
||||
edge_(),
|
||||
node((3, 1), `prediction`),
|
||||
node((1, 1), `unknown`),
|
||||
)
|
||||
))
|
||||
]
|
||||
|
||||
#focus-title-slide[
|
||||
A #text(fill: rot)[Testbed] for Voice Assistant \ Traffic Fingerprinting
|
||||
]
|
||||
|
||||
#slide(title: [Comparison], new-section: [Testbed])[
|
||||
#pdfpc.speaker-note("Why? Let's look at Website Traffic Fingerprinting")
|
||||
|
||||
#side-by-side[
|
||||
Website Fingerprinting:
|
||||
- Requires a large amount of data
|
||||
- Data collection usually via program making requests
|
||||
- Only dependent on network environment
|
||||
- Fast
|
||||
][
|
||||
Voice Command Fingerprinting: #pause
|
||||
- Requires a large amount of data #pause
|
||||
- Interaction by speaking \ ~ #pause
|
||||
- Hampered by environment noise \ ~ #pause
|
||||
- Slow and inefficient #pause
|
||||
#text(fill: rot)[$->$ Sophisticated testbed]
|
||||
]
|
||||
]
|
||||
|
||||
#slide(title: [])[
|
||||
#counter(footnote).update(0) // reset footnote counter
|
||||
|
||||
#pdfpc.speaker-note("Found in one of the newer papers")
|
||||
|
||||
#v(4em)
|
||||
|
||||
#quote(attribution: [Mao et al.#footnote[Jianghan Mao et al., #quote[A novel model for voice command fingerprinting using deep learning], March 2022, Available: #link("https://doi.org/10.1016/j.jisa.2021.103085")]], block: true, quotes: true)[The content of voice commands may vary from date to date; therefore, more efficient data collection tools need to be developed.]
|
||||
]
|
||||
|
||||
#slide(title: [Requirements])[
|
||||
- Sound isolation
|
||||
- Isolated box
|
||||
- Separate speaker/microphone
|
||||
- Efficiency
|
||||
- Every second saved per interaction means hours saved when collecting dozens of thousands interactions
|
||||
- Dynamic interaction length by listening for silence
|
||||
- Robustness
|
||||
- Autonomously reset VA if error occurs
|
||||
- Monitoring system
|
||||
]
|
||||
|
||||
#slide(title: [System])[
|
||||
#text(size: 0.8em)[
|
||||
/ `varys`: The main executable combining all modules into the final system.
|
||||
/ `varys-analysis`: Analysis of data collected by varys.
|
||||
/ `varys-audio`: Recording audio and the TTS and STT systems.
|
||||
/ `varys-database`: Abstraction of the database system where interactions are stored.
|
||||
/ `varys-network`: Collection of network traffic, writing and parsing of `.pcap` files.
|
||||
]
|
||||
|
||||
#v(1em)
|
||||
|
||||
#align(center, text(size: 0.7em)[
|
||||
#fletcher.diagram(
|
||||
node-stroke: 1pt,
|
||||
edge-stroke: 1pt,
|
||||
node-corner-radius: 4pt,
|
||||
edge-corner-radius: 4pt,
|
||||
spacing: 1.5em,
|
||||
node((0, 0), `varys`, fill: rgb("eee")),
|
||||
edge_("r"),
|
||||
edge_("dd", "l", "d"),
|
||||
edge_("ddd"),
|
||||
edge_("dd", "r", "d"),
|
||||
group_node(anthrazit, (1, 0), "varys-analysis"),
|
||||
edge_("d", (0.12, 1), (0.12, 2.625)),
|
||||
edge_("d", (1.2, 1), (1.2, 2.625)),
|
||||
group_node(anthrazit, (-1, 3), "varys-audio"),
|
||||
group_node(anthrazit, (0, 3), "varys-network"),
|
||||
group_node(anthrazit, (1, 3), "varys-database"),
|
||||
)
|
||||
])
|
||||
]
|
||||
|
||||
#focus-title-slide[
|
||||
Results
|
||||
]
|
||||
|
||||
#slide(title: [Datasets], new-section: [Results])[
|
||||
#v(2em)
|
||||
|
||||
\~800h, \~70'000 interactions
|
||||
|
||||
~
|
||||
|
||||
/ ` large`: 227 queries, 140 interactions each
|
||||
/ ` small`: 13 queries, 2400 interactions each
|
||||
/ `binary`: #quote[Call John Doe] and #quote[Call Mary Poppins], 1500 interactions each
|
||||
]
|
||||
|
||||
#slide(title: [Efficiency])[
|
||||
#pdfpc.speaker-note("Some outliers like \"tell me a story\" at >1min")
|
||||
|
||||
#align(center, text(size: 0.8em)[
|
||||
#cetz.canvas({
|
||||
import cetz.draw: *
|
||||
import cetz.plot
|
||||
|
||||
let data = csv("csv/aggregate_average_duration.csv").map(item => {
|
||||
(float(item.at(0)), int(item.at(1)))
|
||||
})
|
||||
let data_remaining = csv("csv/aggregate_average_remaining_duration.csv").map(item => {
|
||||
(float(item.at(0)), int(item.at(1)))
|
||||
})
|
||||
|
||||
set-style(legend: (padding: 5pt, item: (spacing: 10pt)))
|
||||
plot.plot(
|
||||
size: (24, 8),
|
||||
axis-style: "scientific-auto",
|
||||
legend: "legend.inner-north",
|
||||
x-label: "average duration [s]",
|
||||
x-tick-step: 2,
|
||||
x-min: 0,
|
||||
x-max: 36,
|
||||
y-label: "queries",
|
||||
y-tick-step: 1,
|
||||
y-min: 0,
|
||||
{
|
||||
for item in data {
|
||||
plot.add(
|
||||
((item.at(0), 0), (..item)),
|
||||
style: (stroke: 2pt + mint),
|
||||
)
|
||||
}
|
||||
plot.add(
|
||||
((100, 0), (100, 1)),
|
||||
style: (stroke: 8pt + mint),
|
||||
label: "Avg. Speaking Duration",
|
||||
)
|
||||
|
||||
for item in data_remaining {
|
||||
plot.add(
|
||||
((item.at(0), 0), (..item)),
|
||||
style: (stroke: 2pt + rot),
|
||||
)
|
||||
}
|
||||
plot.add(
|
||||
((100, 0), (100, 1)),
|
||||
style: (stroke: 8pt + rot),
|
||||
label: "Avg. Remaining Duration",
|
||||
)
|
||||
})
|
||||
})
|
||||
])
|
||||
]
|
||||
|
||||
#slide(title: [Traffic Trace Examples])[
|
||||
#side-by-side[
|
||||
#image(width: 100%, height: 89%, "images/plots/plot-Hey Siri. Any missed calls.png")
|
||||
#v(10pt, weak: true)
|
||||
#quote[Any missed calls?]
|
||||
][
|
||||
#image(width: 100%, height: 89%, "images/plots/plot-Hey Siri. What day was 90 days ago.png")
|
||||
#v(10pt, weak: true)
|
||||
#quote[What day was 90 days ago?]
|
||||
]
|
||||
]
|
||||
|
||||
#slide(title: [Fingerprinting Model])[
|
||||
#counter(footnote).update(0) // reset footnote counter
|
||||
|
||||
#text(size: 0.96em)[
|
||||
Feature extraction #text(size: 0.8em)[(packet size $s in [0, 1500]$ and direction $d in {0, 1}$)]:
|
||||
$$$
|
||||
(s, d) -> (-1)^(d) dot s/1500 #h(0.8em)
|
||||
$$$
|
||||
|
||||
CNN adapted from Wang et al.#footnote[Chenggang Wang et al., #quote[Fingerprinting Encrypted Voice Traffic on Smart Speakers with Deep Learning], May 2020, Available: #link("https://doi.org/10.1145/3395351.3399357")]:
|
||||
]
|
||||
|
||||
#text(size: 0.65em)[
|
||||
#fletcher.diagram(
|
||||
node-stroke: 1pt,
|
||||
node-fill: rgb("eee"),
|
||||
edge-stroke: 1pt,
|
||||
node-corner-radius: 4pt,
|
||||
edge-corner-radius: 4pt,
|
||||
spacing: 1.5em,
|
||||
group_node(rot, (0, 0), align(center)[Input]),
|
||||
edge_(),
|
||||
node((1, 0), align(center)[Conv. Layer \ `[tanh]`]),
|
||||
edge_(),
|
||||
node((2, 0), align(center)[Dropout \ $0.1$]),
|
||||
edge_(),
|
||||
node((3, 0), align(center)[Global Average \ Pooling]),
|
||||
edge_(),
|
||||
node((4, 0), align(center)[Dense Layer \ `[elu]`]),
|
||||
edge_(),
|
||||
node((5, 0), align(center)[Dense Layer \ `[softmax]`]),
|
||||
edge_(),
|
||||
group_node(rot, (6, 0), align(center)[Output]),
|
||||
render: (grid, nodes, edges, options) => {
|
||||
let cnn_1 = (nodes.at(1), nodes.at(2), nodes.at(3))
|
||||
cetz.canvas({
|
||||
enclose_nodes(cnn_1, rgb(0, 0, 0, 50%), clearance: (34pt, 64pt, 34pt, 61pt))
|
||||
fletcher.draw-diagram(grid, nodes, edges, options)
|
||||
})
|
||||
}
|
||||
)
|
||||
]
|
||||
]
|
||||
|
||||
#slide(title: [Classification])[
|
||||
#v(2em)
|
||||
|
||||
Accuracy on test sets:
|
||||
|
||||
/ ` large`: \~40.40% (random choice \~0.44%)
|
||||
/ ` small`: \~86.19% (random choice \~7.69%)
|
||||
/ `binary`: \~71.19% (random choice 50%)
|
||||
]
|
||||
|
||||
#slide(title: [Demo], new-section: [])[
|
||||
#pdfpc.speaker-note("Since I've trained the model on my laptop, I used a smaller network.")
|
||||
|
||||
#text(size: 0.66em)[
|
||||
```sh
|
||||
./target/release/varys -i ap1 analyse demo data/ml/test_5_13\ queries_0.86 f4:34:f0:89:2d:75
|
||||
```
|
||||
]
|
||||
|
||||
#quote[Hey Siri, any missed calls?]
|
||||
|
||||
#quote[Hey Siri, remind me to wash the car.]
|
||||
|
||||
#v(1em)
|
||||
#text(size: 0.66em)[It is unlikely this will work...]
|
||||
]
|
||||
|
||||
#slide(header: pad(left: 1em, top: 0.5em, heading[Timeline References]))[
|
||||
<references>
|
||||
#text(size: 0.7em)[
|
||||
- D. Wagner and B. Schneier, #quote[Analysis of the SSL 3.0 Protocol], November 1996, Available: #link("https://dl.acm.org/doi/10.5555/1267167.1267171")
|
||||
- H. Cheng and R. Avnur, #quote[Traffic Analysis of SSL Encrypted Web Browsing], 1998
|
||||
- K. Abe and S. Goto, #quote[Fingerprinting Attack on Tor Anonymity using Deep Learning], August 2016, Available: #link("https://core.ac.uk/display/229876143")
|
||||
- S. Kennedy et al., #quote[I Can Hear Your Alexa: Voice Command Fingerprinting on Smart Home Speakers], June 2019, Available: #link("https://doi.org/10.1109/CNS.2019.8802686")
|
||||
- Chenggang Wang et al., #quote[Fingerprinting Encrypted Voice Traffic on Smart Speakers with Deep Learning], May 2020, Available: #link("https://doi.org/10.1145/3395351.3399357")
|
||||
- Jianghan Mao et al., #quote[A novel model for voice command fingerprinting using deep learning], March 2022, Available: #link("https://doi.org/10.1016/j.jisa.2021.103085")
|
||||
- D. Ahmed, A. Sabir, and A. Das, #quote[Spying through Your Voice Assistants: Realistic Voice Command Fingerprinting], August 2023, Available: #link("https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-dilawer")
|
||||
]
|
||||
]
|
||||
Reference in New Issue
Block a user