presentation

This commit is contained in:
2024-04-11 13:05:55 +02:00
commit af5b886b90
25 changed files with 991 additions and 0 deletions

549
main.typ Normal file
View File

@@ -0,0 +1,549 @@
#import "@preview/polylux:0.3.1": *
#import "university-custom.typ": *
#import "@preview/fletcher:0.4.1" as fletcher: node, edge
#import "@preview/cetz:0.2.0"
#let mint = rgb("a5d7d2")
#let mint-hell = rgb("d2ebe9")
#let rot = rgb("d20537")
#let anthrazit = rgb("2d373c")
#let anthrazit-hell = rgb("46505a")
#show quote: it => {
if it.block {
it
} else {
emph(it)
}
}
// diagrams
#let edge_(..args) = edge(..args, marks: (none, "|>")) // we can't use set rules for user defined functions yet, so we overwrite it
#let group_node(colour, ..args) = node(
..args,
stroke: colour,
fill: colour.lighten(80%),
)
#let group_edge(colour, description, ..args) = edge(
..args,
text(colour)[#description],
"..",
stroke: colour,
label-side: left,
)
#let enclose_nodes(nodes, colour, clearance: (8pt, 8pt, 8pt, 8pt)) = {
let (center, size) = fletcher.bounding-rect(nodes.map(node => node.real-pos))
center.at(0) = center.at(0) - (clearance.at(3) - clearance.at(1))
center.at(1) = center.at(1) - (clearance.at(2) - clearance.at(0))
cetz.draw.content(
center,
rect(
width: size.at(0) + clearance.at(1) + clearance.at(3),
height: size.at(1) + clearance.at(2) + clearance.at(0),
radius: 16pt,
stroke: colour,
fill: colour.lighten(85%),
)
)
}
// functions
#let focus-title-slide(title) = {
focus-slide(background-color: white)[
#align(center, text(fill: anthrazit, size: 0.7em, weight: "bold", title))
]
}
// #pdfpc.config(
// duration-minutes: 30,
// // start-time: "10:15",
// // end-time: "10:45",
// // note-font-size: 24,
// )
#show: university-theme.with(
short-title: [A Testbed for Voice Assistant Traffic Fingerprinting],
short-author: [Milan van Zanten],
color-a: anthrazit,
color-b: mint,
)
#title-slide(
title: [A Testbed for Voice Assistant \ Traffic Fingerprinting],
subtitle: [Master Thesis Presentation],
authors: [Milan van Zanten],
date: [21.03.2024],
institution-name: [University of Basel],
logo: pad(1em, image("unibas-logo.svg"))
)
#slide(title: [Outline])[
+ Voice Assistants
+ Traffic Fingerprinting
+ Testbed
+ Results
+ Demo
Ask questions any time!
]
#focus-title-slide[
A Testbed for #text(fill: rot)[Voice Assistant] \ Traffic Fingerprinting
]
#slide(title: [Devices], new-section: [Voice Assistants])[
#pdfpc.speaker-note("Three main VAs")
Specifically, #emph[Smart Speakers]
#only(1)[
#side-by-side[
#align(center)[
#image(width: 50%, "images/alexa.jpg")
Echo Dot
#emph[Amazon Alexa]
]
][
#align(center)[
#image(width: 50%, "images/siri.jpg")
HomePod Mini
#emph[Siri]
]
][
#align(center)[
#image(width: 50%, "images/google-assistant.jpg")
Google Home Mini
#emph[Google Assistant]
]
]
]
#only(2)[
#side-by-side[
#align(center)[
#image(width: 40%, "images/alexa.jpg")
#text(size: .6em)[
Echo Dot
#emph[Amazon Alexa]
]
]
][
#align(center)[
#image(width: 80%, "images/siri.jpg")
HomePod Mini
#emph[Siri]
]
][
#align(center)[
#image(width: 40%, "images/google-assistant.jpg")
#text(size: .6em)[
Google Home Mini
#emph[Google Assistant]
]
]
]
]
]
#slide(title: [Smart Speaker Privacy / Security])[
#counter(footnote).update(0) // reset footnote counter
#pdfpc.speaker-note("Why do we want to look at smart speakers?")
#pdfpc.speaker-note("Alexa; guest voice wrongly recognised 65%")
#alternatives(repeat-last: true)[
none #h(1em) `(╯°□°)╯︵ ┻━┻`
][
There are concerns...
]
#pause
- Usually located where sensitive conversations take place
- Necessarily always listening
- Misactivations
- Used to control smart home devices (e.g. door locks)
- No authentication\*
#uncover(3)[About 40% of households in the U.S. own a smart speaker.]
#v(1em)
#text(0.6em)[\* Voice recognition is still insecure.]
]
#slide(title: [Attacks on Smart Speakers])[
#pdfpc.speaker-note("skill squatting; specific to alexa, skills basically apps")
#pdfpc.speaker-note("Boil an egg is an existing skill")
Active:
- Malicious activations
- Similar pronounciations, "skill squatting"
- (e.g. "Boil an egg" $->$ "Boyle an egg")#footnote[D. Kumar et al., #quote[Skill Squatting Attacks on Amazon Alexa], August 2018, Available: #link("https://www.usenix.org/conference/usenixsecurity18/presentation/kumar")]
Passive:
- #alternatives[Traffic Fingerprinting][#text(fill: rot)[Traffic Fingerprinting]]
]
#focus-title-slide[
A Testbed for Voice Assistant \ #text(fill: rot)[Traffic Fingerprinting]
]
#slide(title: [], new-section: [Traffic Fingerprinting])[
#pdfpc.speaker-note("Just after the release of SSL 3.0")
#pdfpc.speaker-note("David Wagner and Bruce Schneier")
#pdfpc.speaker-note("Probably one of the first mentions")
#v(2em)
#quote(attribution: [Wagner and Schneier#footnote[D. Wagner and B. Schneier, #quote[Analysis of the SSL 3.0 Protocol], November 1996, Available: #link("https://dl.acm.org/doi/10.5555/1267167.1267171")]], block: true, quotes: true)[[SSL] traffic analysis aims to recover confidential information about protection sessions by examining unencrypted packet fields and #alternatives(repeat-last: true)[unprotected packet attributes][#text(fill: rot)[unprotected packet attributes]]. For example [...] the volume of network traffic flow]
#uncover(3)[... packet direction, timing, and more]
]
#slide(title: [Timeline])[
#counter(footnote).update(0) // reset footnote counter
#pdfpc.speaker-note("Relevant developments in my opinion")
#pdfpc.speaker-note("Abe and Goto; Denoising Autoencoder on Tor traffic")
#pdfpc.speaker-note("Mao et al.; time between packets")
#pdfpc.speaker-note("Ahmed, Sabir and Das; so far all attacks assumed known traffic window, allowed them to do end-to-end")
/ 1996: Wagner and Schneier#footnote[Timeline references can be found at the end of the presentation.], #text(fill: rot)[coined SSL traffic analysis]
/ 1998: Cheng and Avnur, #text(fill: rot)[website traffic analysis]
#h(4em) #text(fill: rot)[website fingerprinting (WF)...]
/ 2016: Abe and Goto, #text(fill: rot)[deep learning WF]
/ 2019: Kennedy et al., #text(fill: rot)[apply WF techniques to voice assistants (VA)]
/ 2020: Wang et al., #text(fill: rot)[deep learning VA fingerprinting]
/ 2022: Mao et al., #text(fill: rot)[temporal features]
/ 2023: Ahmed, Sabir and Das, #text(fill: rot)[invocation detection]
]
#slide(title: [Threat Model])[
#pdfpc.speaker-note("2. to filter traffic")
#align(center, text(size: 0.7em,
fletcher.diagram(
node-stroke: 1pt,
edge-stroke: 1pt,
node-corner-radius: 8pt,
edge-corner-radius: 8pt,
node-fill: rgb("eee"),
spacing: 3em,
node((-2, 0), `VA Server`),
edge(`WAN`),
node((0, 0), `Gateway`),
edge("rr", `LAN`),
edge("r", "d", "r"),
node((2, 0), `Smart Speaker`),
node((2, 1), `Other Devices`),
group_node(rot, (1, -1), `Attacker`),
edge((1, -0.4), text(fill: rot)[`Intercept`], stroke: rot),
)
))
+ The attacker can intercept traffic from smart speaker
+ The attacker knows the smart speaker address
+ The attacker knows the type of smart speaker used
+ The attacker knows the beginning and end of an interaction
]
#slide(title: [Closed-World])[
#v(2em)
- Fixed list of monitored voice commands
- Traffic is considered to come from one of the monitored commands
- Multiclass classification
Predicts which command was used.
]
#slide(title: [Open-World])[
#v(2em)
- Traffic can also come from new, unmonitored commands
- Binary-classification
Predicts whether traffic is from monitored or unmonitored command.
]
#slide(title: [Combining Both Models])[
#v(2em)
#align(center, text(size: 0.7em,
fletcher.diagram(
node-stroke: 1pt,
edge-stroke: 1pt,
node-corner-radius: 8pt,
edge-corner-radius: 8pt,
node-fill: rgb("eee"),
spacing: 3em,
node((0, 0), `traffic`),
edge_(),
node((1, 0), `open-world classification`),
edge_("d", `unmonitored`),
edge_(`monitored`),
node((3, 0), `closed-world classification`),
edge_(),
node((3, 1), `prediction`),
node((1, 1), `unknown`),
)
))
]
#focus-title-slide[
A #text(fill: rot)[Testbed] for Voice Assistant \ Traffic Fingerprinting
]
#slide(title: [Comparison], new-section: [Testbed])[
#pdfpc.speaker-note("Why? Let's look at Website Traffic Fingerprinting")
#side-by-side[
Website Fingerprinting:
- Requires a large amount of data
- Data collection usually via program making requests
- Only dependent on network environment
- Fast
][
Voice Command Fingerprinting: #pause
- Requires a large amount of data #pause
- Interaction by speaking \ ~ #pause
- Hampered by environment noise \ ~ #pause
- Slow and inefficient #pause
#text(fill: rot)[$->$ Sophisticated testbed]
]
]
#slide(title: [])[
#counter(footnote).update(0) // reset footnote counter
#pdfpc.speaker-note("Found in one of the newer papers")
#v(4em)
#quote(attribution: [Mao et al.#footnote[Jianghan Mao et al., #quote[A novel model for voice command fingerprinting using deep learning], March 2022, Available: #link("https://doi.org/10.1016/j.jisa.2021.103085")]], block: true, quotes: true)[The content of voice commands may vary from date to date; therefore, more efficient data collection tools need to be developed.]
]
#slide(title: [Requirements])[
- Sound isolation
- Isolated box
- Separate speaker/microphone
- Efficiency
- Every second saved per interaction means hours saved when collecting dozens of thousands interactions
- Dynamic interaction length by listening for silence
- Robustness
- Autonomously reset VA if error occurs
- Monitoring system
]
#slide(title: [System])[
#text(size: 0.8em)[
/ `varys`: The main executable combining all modules into the final system.
/ `varys-analysis`: Analysis of data collected by varys.
/ `varys-audio`: Recording audio and the TTS and STT systems.
/ `varys-database`: Abstraction of the database system where interactions are stored.
/ `varys-network`: Collection of network traffic, writing and parsing of `.pcap` files.
]
#v(1em)
#align(center, text(size: 0.7em)[
#fletcher.diagram(
node-stroke: 1pt,
edge-stroke: 1pt,
node-corner-radius: 4pt,
edge-corner-radius: 4pt,
spacing: 1.5em,
node((0, 0), `varys`, fill: rgb("eee")),
edge_("r"),
edge_("dd", "l", "d"),
edge_("ddd"),
edge_("dd", "r", "d"),
group_node(anthrazit, (1, 0), "varys-analysis"),
edge_("d", (0.12, 1), (0.12, 2.625)),
edge_("d", (1.2, 1), (1.2, 2.625)),
group_node(anthrazit, (-1, 3), "varys-audio"),
group_node(anthrazit, (0, 3), "varys-network"),
group_node(anthrazit, (1, 3), "varys-database"),
)
])
]
#focus-title-slide[
Results
]
#slide(title: [Datasets], new-section: [Results])[
#v(2em)
\~800h, \~70'000 interactions
~
/ ` large`: 227 queries, 140 interactions each
/ ` small`: 13 queries, 2400 interactions each
/ `binary`: #quote[Call John Doe] and #quote[Call Mary Poppins], 1500 interactions each
]
#slide(title: [Efficiency])[
#pdfpc.speaker-note("Some outliers like \"tell me a story\" at >1min")
#align(center, text(size: 0.8em)[
#cetz.canvas({
import cetz.draw: *
import cetz.plot
let data = csv("csv/aggregate_average_duration.csv").map(item => {
(float(item.at(0)), int(item.at(1)))
})
let data_remaining = csv("csv/aggregate_average_remaining_duration.csv").map(item => {
(float(item.at(0)), int(item.at(1)))
})
set-style(legend: (padding: 5pt, item: (spacing: 10pt)))
plot.plot(
size: (24, 8),
axis-style: "scientific-auto",
legend: "legend.inner-north",
x-label: "average duration [s]",
x-tick-step: 2,
x-min: 0,
x-max: 36,
y-label: "queries",
y-tick-step: 1,
y-min: 0,
{
for item in data {
plot.add(
((item.at(0), 0), (..item)),
style: (stroke: 2pt + mint),
)
}
plot.add(
((100, 0), (100, 1)),
style: (stroke: 8pt + mint),
label: "Avg. Speaking Duration",
)
for item in data_remaining {
plot.add(
((item.at(0), 0), (..item)),
style: (stroke: 2pt + rot),
)
}
plot.add(
((100, 0), (100, 1)),
style: (stroke: 8pt + rot),
label: "Avg. Remaining Duration",
)
})
})
])
]
#slide(title: [Traffic Trace Examples])[
#side-by-side[
#image(width: 100%, height: 89%, "images/plots/plot-Hey Siri. Any missed calls.png")
#v(10pt, weak: true)
#quote[Any missed calls?]
][
#image(width: 100%, height: 89%, "images/plots/plot-Hey Siri. What day was 90 days ago.png")
#v(10pt, weak: true)
#quote[What day was 90 days ago?]
]
]
#slide(title: [Fingerprinting Model])[
#counter(footnote).update(0) // reset footnote counter
#text(size: 0.96em)[
Feature extraction #text(size: 0.8em)[(packet size $s in [0, 1500]$ and direction $d in {0, 1}$)]:
$$$
(s, d) -> (-1)^(d) dot s/1500 #h(0.8em)
$$$
CNN adapted from Wang et al.#footnote[Chenggang Wang et al., #quote[Fingerprinting Encrypted Voice Traffic on Smart Speakers with Deep Learning], May 2020, Available: #link("https://doi.org/10.1145/3395351.3399357")]:
]
#text(size: 0.65em)[
#fletcher.diagram(
node-stroke: 1pt,
node-fill: rgb("eee"),
edge-stroke: 1pt,
node-corner-radius: 4pt,
edge-corner-radius: 4pt,
spacing: 1.5em,
group_node(rot, (0, 0), align(center)[Input]),
edge_(),
node((1, 0), align(center)[Conv. Layer \ `[tanh]`]),
edge_(),
node((2, 0), align(center)[Dropout \ $0.1$]),
edge_(),
node((3, 0), align(center)[Global Average \ Pooling]),
edge_(),
node((4, 0), align(center)[Dense Layer \ `[elu]`]),
edge_(),
node((5, 0), align(center)[Dense Layer \ `[softmax]`]),
edge_(),
group_node(rot, (6, 0), align(center)[Output]),
render: (grid, nodes, edges, options) => {
let cnn_1 = (nodes.at(1), nodes.at(2), nodes.at(3))
cetz.canvas({
enclose_nodes(cnn_1, rgb(0, 0, 0, 50%), clearance: (34pt, 64pt, 34pt, 61pt))
fletcher.draw-diagram(grid, nodes, edges, options)
})
}
)
]
]
#slide(title: [Classification])[
#v(2em)
Accuracy on test sets:
/ ` large`: \~40.40% (random choice \~0.44%)
/ ` small`: \~86.19% (random choice \~7.69%)
/ `binary`: \~71.19% (random choice 50%)
]
#slide(title: [Demo], new-section: [])[
#pdfpc.speaker-note("Since I've trained the model on my laptop, I used a smaller network.")
#text(size: 0.66em)[
```sh
./target/release/varys -i ap1 analyse demo data/ml/test_5_13\ queries_0.86 f4:34:f0:89:2d:75
```
]
#quote[Hey Siri, any missed calls?]
#quote[Hey Siri, remind me to wash the car.]
#v(1em)
#text(size: 0.66em)[It is unlikely this will work...]
]
#slide(header: pad(left: 1em, top: 0.5em, heading[Timeline References]))[
<references>
#text(size: 0.7em)[
- D. Wagner and B. Schneier, #quote[Analysis of the SSL 3.0 Protocol], November 1996, Available: #link("https://dl.acm.org/doi/10.5555/1267167.1267171")
- H. Cheng and R. Avnur, #quote[Traffic Analysis of SSL Encrypted Web Browsing], 1998
- K. Abe and S. Goto, #quote[Fingerprinting Attack on Tor Anonymity using Deep Learning], August 2016, Available: #link("https://core.ac.uk/display/229876143")
- S. Kennedy et al., #quote[I Can Hear Your Alexa: Voice Command Fingerprinting on Smart Home Speakers], June 2019, Available: #link("https://doi.org/10.1109/CNS.2019.8802686")
- Chenggang Wang et al., #quote[Fingerprinting Encrypted Voice Traffic on Smart Speakers with Deep Learning], May 2020, Available: #link("https://doi.org/10.1145/3395351.3399357")
- Jianghan Mao et al., #quote[A novel model for voice command fingerprinting using deep learning], March 2022, Available: #link("https://doi.org/10.1016/j.jisa.2021.103085")
- D. Ahmed, A. Sabir, and A. Das, #quote[Spying through Your Voice Assistants: Realistic Voice Command Fingerprinting], August 2023, Available: #link("https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-dilawer")
]
]